Abstract The ability to passivate defects and modulate the interface energy‐level alignment (IEA) is key to boost the performance of perovskite solar cells (PSCs). Herein, we report a robust route that simultaneously allows defect passivation and reduced energy difference between perovskite and hole transport layer (HTL) via the judicious placement of polar chlorine‐terminated silane molecules at the interface. Density functional theory (DFT) points to effective passivation of the halide vacancies on perovskite surface by the silane chlorine atoms. An integrated experimental and DFT study demonstrates that the dipole layer formed by the silane molecules decreases the perovskite work function, imparting an Ohmic character to the perovskite/HTL contact. The corresponding PSCs manifest a nearly 20 % increase in power conversion efficiency over pristine devices and a markedly enhanced device stability. As such, the use of polar molecules to passivate defects and tailor the IEA in PSCs presents a promising platform to advance the performance of PSCs.
more »
« less
Influence of Charge Transport Layers on Capacitance Measured in Halide Perovskite Solar Cells
Capacitance-based techniques have been used to measure the electrical properties of halide perovskite solar cells (PSCs) such as defect activation energy and density, carrier concentration, and dielectric constant, which provide key information for evaluating the device performance. Here, we show that capacitance-based techniques cannot be used to reliably analyze the properties of defects in the perovskite layer or at its interface, since the high-frequency capacitance signature is due to the response of charge carriers in the hole-transport layer (HTL). For HTL-free PSCs, the high-frequency capacitance can be considered as the geometric capacitance for analyzing the dielectric constant of the perovskite layer, since there is no trapping and de-trapping of charge carriers in the perovskite layer. We further find that the low-frequency capacitance signature can be used to calculate the activation energy of the ionic conductivity of the perovskite layer, but the overlapping effects with charge transport materials must be avoided.
more »
« less
- Award ID(s):
- 1807818
- PAR ID:
- 10157086
- Date Published:
- Journal Name:
- Joule
- Volume:
- 4
- Issue:
- 3
- ISSN:
- 2542-4785
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The work proposed here aims to describe the dynamics of photoexcited charge carriers at the interface between the perovskite and electron transport layer (ETL) in perovskite solar cells (PSCs) and the effect that the interface morphology has on these dynamics. This is done in an effort to further develop the understanding of these materials so that their chemical composition and morphology may be better utilized to improve PSCs by means of increasing the power conversion efficiency (PCE), maximizing the chemical stability of PSCs to lengthen their lifespan, finding the cheapest and easiest materials to synthesize which have beneficial properties in photovoltaics, etc. This is done by using density functional theory to model the interface and open system Redfield theory to describe the charge carrier dynamics. We find that the charge transfer characteristics at the perovskite/ETL interface depend greatly on the choice of ligands adsorbed on the ETL that act as a bridge between the perovskite and ETL. The two ligand choices discussed here go so far as to determine whether the system will undergo a Förster energy transfer or a Dexter energy transfer upon photoexcitation.more » « less
-
Abstract The interface between the hole transport layer (HTL) and perovskite in p‐i‐n perovskite solar cells (PSCs) plays a vital role in the device performance and stability. However, the impact of this interface on the vertical phase segregation of mixed halide perovskite remains insufficiently understood. This work systematically investigates the impact of chemical and electronic properties of HTL on vertical halide segregation of mixed‐halide perovskites. This work shows that incorporating a poly[bis(4‐phenyl) (2,4,6‐trimethylphenyl) amine] (PTAA)/CuIxBr1‐xbilayer as the HTL significantly suppresses light‐induced vertical phase segregation in MAPb(I0.7Br0.3)3. This work uses grazing‐incidence X‐ray diffraction (GIXRD) to capture the depth‐resolved composition change of MAPb(I0.7Br0.3)3at the interface and within the bulk under illumination. By changing the illumination direction and the electronic properties of HTL, this work elucidates the roles of charge carrier extraction and interfacial defects on vertical phase segregation. The PTAA/CuIxBr1‐xbilayer, with its synergistic passivation and efficient hole extraction ability, stabilizes the interface and bulk of the mixed halide perovskite layer and prevents phase segregation. This work underscores that synergetic passivation and efficient hole extraction pack a more powerful punch for arresting the vertical phase segregation in mixed‐halide perovskite.more » « less
-
Abstract Two key interfaces in flexible perovskite solar cells (f‐PSCs) are mechanically reinforced simultaneously: one between the electron‐transport layer (ETL) and the 3D metal‐halide perovskite (MHP) thin film using self‐assembled monolayer (SAM), and the other between the 3D‐MHP thin film and the hole‐transport layer (HTL) using an in situ grown low‐dimensional (LD) MHP capping layer. The interfacial mechanical properties are measured and modeled. This rational interface engineering results in the enhancement of not only the mechanical properties of both interfaces but also their optoelectronic properties holistically. As a result, the new class of dual‐interface‐reinforced f‐PSCs has an unprecedented combination of the following three important performance parameters: high power‐conversion efficiency (PCE) of 21.03% (with reduced hysteresis), improved operational stability of 1000 hT90(duration at 90% initial PCE retained), and enhanced mechanical reliability of 10 000 cyclesn88(number of bending cycles at 88% initial PCE retained). The scientific underpinnings of these synergistic enhancements are elucidated.more » « less
-
Efficient charge collection is critical in large area (quasi-) planar configuration perovskite solar cells (PSCs) as the cell operation relies on the diffusion of photo-generated charge carriers to charge collector layers. Many defects/traps in the polycrystalline perovskite absorber layer strongly affect the charge collection efficiency because the 2D-like top charge collection layer barely penetrates into the 3D grain boundaries in the perovskite layer to efficiently collect the charge carrier. Inspired by blood capillaries for efficient mass exchange, a charge-collection nano-network for efficient charge collection was incorporated into the perovskite absorber using low-cost, stable amino-functionalized graphene (G-NH 2 ). The integration of such an unprecedented structure enables very efficient charge collection, leading to the significant enhancement of the power conversion efficiency of 1 × 1 cm 2 MAPbI 3 PSCs from 14.4 to 18.7% with higher reproducibility, smaller hysteresis and enhanced stability. The physicochemical mechanisms underlying the role of this nano charge-collection nano-network in boosting the charge collection in PSCs are elucidated comprehensively, using a combined experimental and theoretical approach, pointing to a new direction towards up-scaling of high-efficiency PSCs.more » « less