skip to main content

Title: Population structure, landscape genomics, and genetic signatures of adaptation to exotic disease pressure in Cornus florida L.—Insights from GWAS and GBS data

Understanding the consequences of exotic diseases on native forests is important to evolutionary ecology and conservation biology because exotic pathogens have drastically altered US eastern deciduous forests.Cornus floridaL. (flowering dogwood tree) is one such species facing heavy mortality. Characterizing the genetic structure ofC. floridapopulations and identifying the genetic signature of adaptation to dogwood anthracnose (an exotic pathogen responsible for high mortality) remain vital for conservation efforts. By integrating genetic data from genotype by sequencing (GBS) of 289 trees across the host species range and distribution of disease, we evaluated the spatial patterns of genetic variation and population genetic structure ofC. floridaand compared the pattern to the distribution of dogwood anthracnose. Using genome‐wide association study and gradient forest analysis, we identified genetic loci under selection and associated with ecological and diseased regions. The results revealed signals of weak genetic differentiation of three or more subgroups nested within two clusters—explaining up to 2%–6% of genetic variation. The groups largely corresponded to the regions within and outside the eastern Hot‐Continental ecoregion, which also overlapped with areas within and outside the main distribution of dogwood anthracnose. The fungal sequences contained in the GBS data of sampled trees bolstered visual records of disease at sampled locations and were congruent with the reported range ofDiscula destructiva, suggesting that fungal sequences within‐host genomic data were informative for detecting or predicting disease. The genetic diversity between populations at diseased vs. disease‐free sites across the range ofC. floridashowed no significant difference. We identified 72 single‐nucleotide polymorphisms (SNPs) from 68 loci putatively under selection, some of which exhibited abrupt turnover in allele frequencies along the borders of the Hot‐Continental ecoregion and the range of dogwood anthracnose. One such candidate SNP was independently identified in two prior studies as a possible L‐type lectin‐domain containing receptor kinase. Although diseased and disease‐free areas do not significantly differ in genetic diversity, overall there are slight trends to indicate marginally smaller amounts of genetic diversity in disease‐affected areas. Our results were congruent with previous studies that were based on a limited number of genetic markers in revealing high genetic variation and weak population structure inC. florida.

more » « less
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Date Published:
Journal Name:
Journal of Systematics and Evolution
Page Range / eLocation ID:
p. 546-570
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Discovering local adaptation, its genetic underpinnings, and environmental drivers is important for conserving forest species. Ecological genomic approaches coupled with next‐generation sequencing are useful means to detect local adaptation and uncover its underlying genetic basis in nonmodel species. We report results from a study on flowering dogwood trees (Cornus florida L.) using genotyping by sequencing (GBS). This species is ecologically important to easternUSforests but is severely threatened by fungal diseases. We analyzed subpopulations in divergent ecological habitats within North Carolina to uncover loci under local selection and associated with environmental–functional traits or disease infection. At this scale, we tested the effect of incorporating additional sequencing before scaling for a broader examination of the entire range. To test for biases ofGBS, we sequenced two similarly sampled libraries independently from six populations of three ecological habitats. We obtained environmental–functional traits for each subpopulation to identify associations with genotypes via latent factor mixed modeling (LFMM) and gradient forests analysis. To test whether heterogeneity of abiotic pressures resulted in genetic differentiation indicative of local adaptation, we evaluatedFstper locus while accounting for genetic differentiation between coastal subpopulations and Piedmont‐Mountain subpopulations. Of the 54 candidate loci with sufficient evidence of being under selection among both libraries, 28–39 were Arlequin–BayeScanFstoutliers. ForLFMM, 45 candidates were associated with climate (of 54), 30 were associated with soil properties, and four were associated with plant health. Reanalysis of combined libraries showed that 42 candidate loci still showed evidence of being under selection. We conclude environment‐driven selection on specific loci has resulted in local adaptation in response to potassium deficiencies, temperature, precipitation, and (to a marginal extent) disease. High allele turnover along ecological gradients further supports the adaptive significance of loci speculated to be under selection.

    more » « less
  2. Koch, Frank H. (Ed.)
    Over the past several decades, growth declines and mortality of trembling aspen throughout western Canada and the United States have been linked to drought, often interacting with outbreaks of insects and fungal pathogens, resulting in a “sudden aspen decline” throughout much of aspen’s range. In 2015, we noticed an aggressive fungal canker causing widespread mortality of aspen throughout interior Alaska and initiated a study to quantify potential drivers for the incidence, virulence, and distribution of the disease. Stand-level infection rates among 88 study sites distributed across 6 Alaska ecoregions ranged from <1 to 69%, with the proportion of trees with canker that were dead averaging 70% across all sites. The disease is most prevalent north of the Alaska Range within the Tanana Kuskokwim ecoregion. Modeling canker probability as a function of ecoregion, stand structure, landscape position, and climate revealed that smaller-diameter trees in older stands with greater aspen basal area have the highest canker incidence and mortality, while younger trees in younger stands appear virtually immune to the disease. Sites with higher summer vapor pressure deficits had significantly higher levels of canker infection and mortality. We believe the combined effects of this novel fungal canker pathogen, drought, and the persistent aspen leaf miner outbreak are triggering feedbacks between carbon starvation and hydraulic failure that are ultimately driving widespread mortality. Warmer early-season temperatures and prolonged late summer drought are leading to larger and more severe wildfires throughout interior Alaska that are favoring a shift from black spruce to forests dominated by Alaska paper birch and aspen. Widespread aspen mortality fostered by this rapidly spreading pathogen has significant implications for successional dynamics, ecosystem function, and feedbacks to disturbance regimes, particularly on sites too dry for Alaska paper birch. 
    more » « less

    Sorghum anthracnose caused by the fungusColletotrichum sublineola(Cs) is a damaging disease of the crop. Here, we describe the identification ofANTHRACNOSE RESISTANCE GENES(ARG4andARG5) encoding canonical nucleotide‐binding leucine‐rich repeat (NLR) receptors.ARG4andARG5are dominant resistance genes identified in the sorghum lines SAP135 and P9830, respectively, that show broad‐spectrum resistance toCs. Independent genetic studies using populations generated by crossing SAP135 and P9830 with TAM428, fine mapping using molecular markers, comparative genomics and gene expression studies determined thatARG4andARG5are resistance genes againstCsstrains. Interestingly,ARG4andARG5are both located within clusters of duplicate NLR genes at linked loci separated by ~1 Mb genomic region. SAP135 and P9830 each carry only one of theARGgenes while having the recessive allele at the second locus. Only two copies of theARG5candidate genes were present in the resistant P9830 line while five non‐functional copies were identified in the susceptible line. The resistant parents and their recombinant inbred lines carrying eitherARG4orARG5are resistant to strains Csgl1 and Csgrg suggesting that these genes have overlapping specificities. The role ofARG4andARG5in resistance was validated through sorghum lines carrying independent recessive alleles that show increased susceptibility.ARG4andARG5are located within complex loci displaying interesting haplotype structures and copy number variation that may have resulted from duplication. Overall, the identification of anthracnose resistance genes with unique haplotype stucture provides a foundation for genetic studies and resistance breeding.

    more » « less
  4. Abstract

    Previous theoretical work has highlighted the potential for natural enemies to mediate the coexistence of species with similar life histories via density‐dependent effects on survivorship. For plant pathogens to play this role, they must differ in their ability to infect or induce disease in different host plant species. In tropical forests characterized by high diversity, these effects must extend to phylogenetically closely related species pairs. Mortality at the seed and seedling stage strongly influences the abundance and distribution of tropical tree species, but the host preferences and spatial distributions of fungi are rarely determined.

    We examined how host species identity, relatedness and seed viability influence the composition of fungal communities associated with seeds of four co‐occurring pioneer trees (Cecropia insignis,C. longipes,C. peltataandJacaranda copaia). Seeds were buried in mesh bags in five common gardens in the understorey of a lowland tropical forest in Panama and retrieved at intervals from 1 to 30 months. A subset of the seeds in each bag was used to determine germination success. One half of each remaining seed was tested for viability; and the other half was used to culture and identify seed‐infecting fungi.

    Seeds were infected by fungi after burial. Although fungal communities differed in viable versus dead seeds, and across burial locations, community composition primarily varied as a function of plant species identity (30.7% of variation in community composition vs. 4.5% for viability and location together), even for congenericCecropiaspecies. Phylogenetic reconstruction showed that relatedness of fungi mostly reflected differences betweenJacaranda(Bignoniaceae) andCecropia(Urticaceae).

    Although the proportion of germinable seeds decreased gradually over time for all species, intraspecific variation in survival was high at the same location (e.g. ranging from 0% to 100% forC. peltata) suggesting variable exposure or susceptibility to seed pathogens.

    Synthesis. Our study provides evidence under field conditions that congeneric tree species with similar life history traits differ markedly in seed‐associated fungal communities when exposed to the same soil‐borne fungi. This is a critical first step supporting pathogen‐mediated coexistence of closely related tree species.

    more » « less
  5. Abstract Aim

    Intraspecific genetic variation is key for adaptation and survival in changing environments and is known to be influenced by many factors, including population size, dispersal and life‐history traits. We investigated genetic variation within Neotropical amphibian species to provide insights into how natural history traits, phylogenetic relatedness, climatic and geographic characteristics can explain intraspecific genetic diversity.






    We assembled data sets using open‐access databases for natural history traits, genetic sequences, phylogenetic trees, climatic and geographic data. For each species, we calculated overall nucleotide diversity (π) and tested for isolation by distance (IBD) and isolation by environment (IBE). We then identified predictors ofπ, IBD and IBE using random forest (RF) regression or RF classification. We also fitted phylogenetic generalized linear mixed models (PGLMMs) to predictπ, IBD and IBE.


    We compiled 4052 mitochondrial DNA sequences from 256 amphibian species (230 frogs and 26 salamanders), georeferencing 2477 sequences from 176 species that were not linked to occurrence data. RF regressions and PGLMMs were congruent in identifying range size and precipitation (σ) as the most important predictors ofπ, influencing it positively. RF classification and PGLMMs identified minimum elevation as an important predictor of IBD; most species without IBD tended to occur at higher elevations. Maximum latitude and precipitation (σ) were the best predictors of IBE, and most species without IBE occur at lower latitudes and in areas with more variable precipitation.

    Main Conclusions

    This study identified predictors of genetic variation in Neotropical amphibians using both machine learning and phylogenetic methods. This approach was valuable to determine which predictors were congruent between methods. We found that species with small ranges or living in zones with less variable precipitation tended to have low genetic diversity. We also showed that Western Mesoamerica, Andes and Atlantic Forest biogeographic units harbour high diversity across many species that should be prioritized for protection. These results could play a key role in the development of conservation strategies for Neotropical amphibians.

    more » « less