The problem of ordinal classification occurs in a large and growing number of areas. Some of the most common source and applications of ordinal data include rating scales, medical classification scales, socio-economic scales, meaningful groupings of continuous data, facial emotional intensity, facial age estimation, etc. The problem of predicting ordinal classes is typically addressed by either performing n-1 binary classification for n ordinal classes or treating ordinal classes as continuous values for regression. However, the first strategy doesn't fully utilize the ordering information of classes and the second strategy imposes a strong continuous assumption to ordinal classes. In this paper, we propose a novel loss function called Ordinal Hyperplane Loss (OHPL) that is particularly designed for data with ordinal classes. The proposal of OHPL is a significant advancement in predicting ordinal class data, since it enables deep learning techniques to be applied to the ordinal classification problem on both structured and unstructured data. By minimizing OHPL, a deep neural network learns to map data to an optimal space where the distance between points and their class centroids are minimized while a nontrivial ordinal relationship among classes are maintained. Experimental results show that deep neural network with OHPL not only outperforms the state-of-the-art alternatives on classification accuracy but also scales well to large ordinal classification problems.
more »
« less
Net Promoter Sentiment Classifier Using OHPL-ALL
Net Promotor Score is an important business measurement process where customers are surveyed and asked to rate their likelihood of recommending the company's products and/or services. In many applications, customers are asked to respond on an 11-point ordinal scale of 0 to 10. In developing the score, the data are reformulated into a labelled 3 class scale (0-6: Detractor, 7-8: Passive and 9-10: Promoter). [1] Many companies that choose to use Net Promoter Score as a core management metric integrate the measurement into all phases of the company and seek every opportunity to assess company performance in terms of likelihood to promote the company. In addition to a variety of survey opportunities, the ability to score comments in survey, social media and blogs with promoter rating may provide an additional valuable source of business insight. Even on a three-point scale, Net Promoter is an ordinal classification problem. A number of successful algorithms, that develop ordinal classifiers have been developed. [2] None of the top performing classifiers can be used for applications like text classification or image classification, since they don't employ deep learning. Any appropriate strategy must utilize the ordering information of classes without imposing a strong continuous assumption or fixed spacing assumption on the ordinal classes. In this paper, we use a novel Deep Learning methodology called OHPLnet (Ordinal Hyperplane Loss Network) that is specifically designed for data with ordinal classes. [3] The algorithm is used to develop predictions of the eleven classes, that may be used in the standard Net Promoter Score generation process.
more »
« less
- Award ID(s):
- 1853191
- PAR ID:
- 10157401
- Date Published:
- Journal Name:
- 2019 IEEE International Conference on Big Data (Big Data)
- Page Range / eLocation ID:
- 2494 to 2502
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Student engagement is a key component of learning and teaching, resulting in a plethora of automated methods to measure it. Whereas most of the literature explores student engagement analysis using computer-based learning often in the lab, we focus on using classroom instruction in authentic learning environments. We collected audiovisual recordings of secondary school classes over a one and a half month period, acquired continuous engagement labeling per student (N=15) in repeated sessions, and explored computer vision methods to classify engagement from facial videos. We learned deep embeddings for attentional and affective features by training Attention-Net for head pose estimation and Affect-Net for facial expression recognition using previously-collected large-scale datasets. We used these representations to train engagement classifiers on our data, in individual and multiple channel settings, considering temporal dependencies. The best performing engagement classifiers achieved student-independent AUCs of .620 and .720 for grades 8 and 12, respectively, with attention-based features outperforming affective features. Score-level fusion either improved the engagement classifiers or was on par with the best performing modality. We also investigated the effect of personalization and found that only 60 seconds of person-specific data, selected by margin uncertainty of the base classifier, yielded an average AUC improvement of .084.more » « less
-
Image classifiers have become an important component of today’s software, from consumer and business applications to safety-critical domains. The advent of Deep Neural Networks (DNNs) is the key catalyst behind such wide-spread success. However, wide adoption comes with serious concerns about the robustness of software systems dependent on image classification DNNs, as several severe erroneous behaviors have been reported under sensitive and critical circumstances. We argue that developers need to rigorously test their software’s image classifiers and delay deployment until acceptable. We present an approach to testing image classifier robustness based on class property violations. We have found that many of the reported erroneous cases in popular DNN image classifiers occur because the trained models confuse one class with another or show biases towards some classes over others. These bugs usually violate some class properties of one or more of those classes. Most DNN testing techniques focus on per-image violations and thus fail to detect such class-level confusions or biases. We developed a testing approach to automatically detect class-based confusion and bias errors in DNN-driven image classification software. We evaluated our implementation, DeepInspect, on several popular image classifiers with precision up to 100% (avg. 72.6%) for confusion errors, and up to 84.3% (avg. 66.8%) for bias errors. DeepInspect found hundreds of classification mistakes in widely-used models, many of which expose errors indicating confusion or bias.more » « less
-
This article presents a state-of-the-art system to extract and synthesize causal statements from company reports into a directed causal graph. The extracted information is organized by its relevance to different stakeholder group benefits (customers, employees, investors, and the community/environment). The presented method of synthesizing extracted data into a knowledge graph comprises a framework that can be used for similar tasks in other domains, e.g., medical information. The current work addresses the problem of finding, organizing, and synthesizing a view of the cause-and-effect relationships based on textual data in order to inform and even prescribe the best actions that may affect target business outcomes related to the benefits for different stakeholders (customers, employees, investors, and the community/environment).more » « less
-
Existing score-based adversarial attacks mainly focus on crafting top-1 adversarial examples against classifiers with single-label classification. Their attack success rate and query efficiency are often less than satisfactory, particularly under small perturbation requirements; moreover, the vulnerability of classifiers with multilabel learning is yet to be studied. In this paper, we propose a comprehensive surrogate free score-based attack, named geometric score-based black-box attack (GSBAK), to craft adversarial examples in an aggressive top-K setting for both untargeted and targeted attacks, where the goal is to change the top-K predictions of the target classifier. We introduce novel gradient-based methods to find a good initial boundary point to attack. Our iterative method employs novel gradient estimation techniques, particularly effective in top-K setting, on the decision boundary to effectively exploit the geometry of the decision boundary. Additionally, GSBAK can be used to attack against classifiers with top-K multi-label learning. Extensive experimental results on ImageNet and PASCAL VOC datasets validate the effectiveness of GSBAK in crafting top-K adversarial examples.more » « less
An official website of the United States government

