skip to main content


Title: Crystallographic characterization of a tri-Asp metal-binding site at the three-fold symmetry axis of LarE
Abstract Detailed crystallographic characterization of a tri-aspartate metal-binding site previously identified on the three-fold symmetry axis of a hexameric enzyme, LarE from Lactobacillus plantarum, was conducted. By screening an array of monovalent, divalent, and trivalent metal ions, we demonstrated that this metal binding site stoichiometrically binds Ca2+, Mn2+, Fe2+/Fe3+, Co2+, Ni2+, Cu2+, Zn2+, and Cd2+, but not monovalent metal ions, Cr3+, Mg2+, Y3+, Sr2+ or Ba2+. Extensive database searches resulted in only 13 similar metal binding sites in other proteins, indicative of the rareness of tri-aspartate architectures, which allows for engineering such a selective multivalent metal ion binding site into target macromolecules for structural and biophysical characterization.  more » « less
Award ID(s):
1807073
NSF-PAR ID:
10157516
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Scientific reports
Volume:
10
Issue:
1
ISSN:
0068-1261
Page Range / eLocation ID:
5830
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Cryogenic infrared vibrational spectroscopy of D2-tagged cyanobenzoate (CBA) derivatives are obtained and analyzed to characterize the intrinsic spectroscopic responses of the -CO2‾ head group to its location on the ring in both the isolated anions and the cationic complexes with divalent metal ions, M2+ (M=Mg, Ca, Sr). The benzonitrile functionality establishes the different ring isomers (para, meta, ortho) according to the location of the carboxylate and provides an additional reporter on the molecular response to the proximal charge center. The aromatic carboxylates display slightly smaller shifts than those observed for a related aliphatic system upon metal ion complexation. Although the CBA anions display very similar band patterns for all three ring positions, upon complexation with metal ions, the ortho isomer yields dramatically different spectral responses in both the -CO2‾ moiety and the CN group. This behavior is traced to the emergence of a tridentate binding motif unique to the ortho isomer in which the metal ions bind to both the oxygen atoms of the carboxylate group and the N atom of the cyano group. In that configuration, the -CO2‾ moiety is oriented perpendicular to the phenyl ring, and the CN stretching fundamental is both strong and red-shifted relative to its behavior in the isolated neutral. The behaviors of the metal-bound ortho complexes occur in contrast to the usual blue shifts associated with “Lewis” type binding of metal ions end-on to -CN. The origins of these spectroscopic features are analyzed with the aid of electronic structure calculations, which also explore differences expected for complexation of monovalent cations to the ortho carboxylate. The resulting insights have implications for understanding the balance between electrostatic and steric interactions at metal binding sites in chemical and biological systems. 
    more » « less
  2. null (Ed.)
    The past decade has witnessed tremendous advances in synthesis of metal halide perovskites and their use for a rich variety of optoelectronics applications. Metal halide perovskite has the general formula ABX 3 , where A is a monovalent cation (which can be either organic ( e.g. , CH 3 NH 3 + (MA), CH(NH 2 ) 2 + (FA)) or inorganic ( e.g. , Cs + )), B is a divalent metal cation (usually Pb 2+ ), and X is a halogen anion (Cl − , Br − , I − ). Particularly, the photoluminescence (PL) properties of metal halide perovskites have garnered much attention due to the recent rapid development of perovskite nanocrystals. The introduction of capping ligands enables the synthesis of colloidal perovskite nanocrystals which offer new insight into dimension-dependent physical properties compared to their bulk counterparts. It is notable that doping and ion substitution represent effective strategies for tailoring the optoelectronic properties ( e.g. , absorption band gap, PL emission, and quantum yield (QY)) and stabilities of perovskite nanocrystals. The doping and ion substitution processes can be performed during or after the synthesis of colloidal nanocrystals by incorporating new A′, B′, or X′ site ions into the A, B, or X sites of ABX 3 perovskites. Interestingly, both isovalent and heterovalent doping and ion substitution can be conducted on colloidal perovskite nanocrystals. In this review, the general background of perovskite nanocrystals synthesis is first introduced. The effects of A-site, B-site, and X-site ionic doping and substitution on the optoelectronic properties and stabilities of colloidal metal halide perovskite nanocrystals are then detailed. Finally, possible applications and future research directions of doped and ion-substituted colloidal perovskite nanocrystals are also discussed. 
    more » « less
  3. null (Ed.)
    The visualization of chloride in living cells with fluorescent sensors is linked to our ability to design hosts that can overcome the energetic penalty of desolvation to bind chloride in water. Fluorescent proteins can be used as biological supramolecular hosts to address this fundamental challenge. Here, we showcase the power of protein engineering to convert the fluorescent proton-pumping rhodopsin GR from Gloeobacter violaceus into GR1, a red-shifted, turn-on fluorescent sensor for chloride in detergent micelles and in live Escherichia coli . This non-natural function was unlocked by mutating D121, which serves as the counterion to the protonated retinylidene Schiff base chromophore. Substitution from aspartate to valine at this position (D121V) creates a binding site for chloride. The binding of chloride tunes the p K a of the chromophore towards the protonated, fluorescent state to generate a pH-dependent response. Moreover, ion pumping assays combined with bulk fluorescence and single-cell fluorescence microscopy experiments with E. coli , expressing a GR1 fusion with a cyan fluorescent protein, show that GR1 does not pump ions nor sense membrane potential but instead provides a reversible, ratiometric readout of changes in extracellular chloride at the membrane. This discovery sets the stage to use natural and laboratory-guided evolution to build a family of rhodopsin-based fluorescent chloride sensors with improved properties for cellular applications and learn how proteins can evolve and adapt to bind anions in water. 
    more » « less
  4. Transmembrane P 1B -type ATPase pumps catalyze the extrusion of transition metal ions across cellular lipid membranes to maintain essential cellular metal homeostasis and detoxify toxic metals. Zn( ii )-pumps of the P 1B-2 -type subclass, in addition to Zn 2+ , select diverse metals (Pb 2+ , Cd 2+ and Hg 2+ ) at their transmembrane binding site and feature promiscuous metal-dependent ATP hydrolysis in the presence of these metals. Yet, a comprehensive understanding of the transport of these metals, their relative translocation rates, and transport mechanism remain elusive. We developed a platform for the characterization of primary-active Zn( ii )-pumps in proteoliposomes to study metal selectivity, translocation events and transport mechanism in real-time, employing a “multi-probe” approach with fluorescent sensors responsive to diverse stimuli (metals, pH and membrane potential). Together with atomic-resolution investigation of cargo selection by X-ray absorption spectroscopy (XAS), we demonstrate that Zn( ii )-pumps are electrogenic uniporters that preserve the transport mechanism with 1 st -, 2 nd - and 3 rd -row transition metal substrates. Promiscuous coordination plasticity, guarantees diverse, yet defined, cargo selectivity coupled to their translocation. 
    more » « less
  5. Abstract

    Black phosphorus (bP) is a two‐dimensional van der Waals material unique in its potential to serve as a support for single‐site catalysts due to its similarity to molecular phosphines, ligands quintessential in homogeneous catalysis. However, there is a scarcity of synthetic methods to install single metal centers on the bP lattice. Here, we demonstrate the functionalization of bP nanosheets with molecular Re and Mo complexes. A suite of characterization techniques, including infrared, X‐ray photoelectron and X‐ray absorption spectroscopy as well as scanning transmission electron microscopy corroborate that the functionalized nanosheets contain a high density of discrete metal centers directly bound to the bP surface. Moreover, the supported metal centers are chemically accessible and can undergo ligand exchange transformations without detaching from the surface. The steric and electronic properties of bP as a ligand are estimated with respect to molecular phosphines. Sterically, bP resembles tri(tolyl)phosphine when monodentate to a metal center, and bis(diphenylphosphino)propane when bidentate, whereas electronically bP is a σ‐donor as strong as a trialkyl phosphine. This work is foundational in elucidating the nature of black phosphorus as a ligand and underscores the viability of using bP as a basis for single‐site catalysts.

     
    more » « less