skip to main content


Title: Atlantic–Pacific Links in Observed Multidecadal SST Variability: Is the Atlantic Multidecadal Oscillation’s Phase Reversal Orchestrated by the Pacific Decadal Oscillation?

The Atlantic and Pacific basin are found linked in the context of multidecadal SST variability from analyses of 118 years of observational data. Recurrent spatiotemporal variability, including multidecadal modes, was identified using the extended-EOF technique in a longitudinally global domain, allowing unfettered expression of interbasin interactions. The physicality of the obtained decadal modes was assessed using fishery records and analog counts.

A three-mode structure with bi-directional interbasin links frames the new perspective on the cycling of multidecadal SST variability. The three modes are the Atlantic multidecadal oscillation (AMO), low-frequency North Atlantic Oscillation (LF-NAO), and North Pacific decadal variability [PDV-NP; resembling negative (–ve) PDO]. The two previously documented links AMO→PDV-NP (with ~12.5-yr lead) and LF-NAO→AMO (with 16-yr lead) are corroborated, while a third one, PDV-NP→(−LF-NAO) with ~6.5-yr lead, is uncovered. The interaction triad closes the loop on the cycling of multidecadal SST variability, generating AMO’s phase reversal in ~35 years, consistent with its widely noted ~70-yr time scale. The two previously noted links—one intrabasin and one interbasin—were unsuccessful in this regard.

Other findings include the deeper subsurface extensions of Atlantic multidecadal SST variability, and the hitherto unrecognized similarity of Pan-Pacific decadal variability and North Pacific Gyre Oscillation. Instrumental records, albeit short in the context of multidecadal variability, must continue to be mined for insights into the functioning of the climate system as its model representations while improving, remain inadequate.

 
more » « less
NSF-PAR ID:
10157566
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
American Meteorological Society
Date Published:
Journal Name:
Journal of Climate
Volume:
33
Issue:
13
ISSN:
0894-8755
Page Range / eLocation ID:
p. 5479-5505
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Recent research has linked the climate variability associated with ocean-atmosphere teleconnections to impacts rippling throughout environmental, economic, and social systems. This research reviews recent literature through 2021 in which we identify linkages among the major modes of climate variability, in the form of ocean-atmosphere teleconnections, and the impacts to temperature and precipitation of the South-Central United States (SCUSA), consisting of Arkansas, Louisiana, New Mexico, Oklahoma, and Texas. The SCUSA is an important areal focus for this analysis because it straddles the ecotone between humid and arid climates in the United States and has a growing population, diverse ecosystems, robust agricultural and other economic sectors including the potential for substantial wind and solar energy generation. Whereas a need exists to understand atmospheric variability due to the cascading impacts through ecological and social systems, our understanding is complicated by the positioning of the SCUSA between subtropical and extratropical circulation features and the influence of the Pacific and Atlantic Oceans, and the adjacent Gulf of Mexico. The Southern Oscillation (SO), Pacific-North American (PNA) pattern, North Atlantic Oscillation (NAO) and the related Arctic Oscillation (AO), Atlantic Multidecadal Oscillation/Atlantic Multidecadal Variability (AMO/AMV), and Pacific Decadal Oscillation/Pacific Decadal Variability (PDO/PDV) have been shown to be important modulators of temperature and precipitation variables at the monthly, seasonal, and interannual scales, and the intraseasonal Madden-Julian Oscillation (MJO) in the SCUSA. By reviewing these teleconnection impacts in the region alongside updated seasonal correlation maps, this research provides more accessible and comparable results for interdisciplinary use on climate impacts beyond the atmospheric-environmental sciences. 
    more » « less
  2. Abstract Recent studies demonstrated the existence of a conspicuous atmospheric combination mode (C-mode) originating from nonlinear interactions between El Niño–Southern Oscillation (ENSO) and the Pacific warm pool annual cycle (AC). Here we find that the C-mode exhibits prominent decadal amplitude variations during the ENSO decaying boreal spring season. It is revealed that the Atlantic multidecadal oscillation (AMO) can largely explain this waxing and waning in amplitude. A robust positive correlation between ENSO and the C-mode is detected during a negative AMO phase but not during a positive phase. Similar results can also be found in the relationship of ENSO with 1) the western North Pacific (WNP) anticyclone and 2) spring precipitation over southern China, both of which are closely associated with the C-mode. We suggest that ENSO property changes due to an AMO modulation play a crucial role in determining these decadal shifts. During a positive AMO phase, ENSO events are distinctly weaker than those in an AMO negative phase. In addition, El Niño events concurrent with a positive AMO phase tend to exhibit a westward-shifted sea surface temperature (SST) anomaly pattern. These SST characteristics during the positive AMO phase are both not conducive to the development of the meridionally asymmetric C-mode atmospheric circulation pattern and thus reduce the ENSO/C-mode correlation on decadal time scales. These observations can be realistically reproduced by a coupled general circulation model (CGCM) experiment in which North Atlantic SSTs are nudged to reproduce a 50-yr sinusoidally varying AMO evolution. Our conclusion carries important implications for understanding seasonally modulated ENSO dynamics and multiscale climate impacts over East Asia. 
    more » « less
  3. Abstract

    By analysing a 113–year (1900–2012) observational dataset, it is shown that the interdecadal fluctuation of the summer precipitation over Northeast Asia differs from that in central East Asia during the 20th century, and has experienced three interdecadal shifts in the 1920s, mid‐1960s and late 1990s. That fluctuation coincides well with the multidecadal fluctuation of the sea surface temperature in the North Atlantic, known as the Atlantic Multidecadal Oscillation (AMO). The AMO affects Northeast Asia via a circumglobal teleconnection pattern extending from the North Atlantic to North America. Corresponding with the positive phase of this teleconnection pattern, a tripolar pattern emerges in the Asian–North Pacific sector, with anomalous low pressure over Northeast Asia and high pressure over Lake Baikal and the mid‐latitude western North Pacific. These results suggest that the positive phase of the AMO favours the occurrence of cold vortex over Northeast Asia and anomalous highs over Lake Baikal and the mid‐latitude western North Pacific in summer, which enhances the East Asian summer monsoon and southward intrusion of high‐latitude cold air, and eventually increases the summer precipitation in Northeast Asia. Furthermore, initialized decadal prediction simulations using the CCSM4 model reproduce well the observed variations of the AMO and its associated atmospheric teleconnection but with slightly shifted geographic locations. The simulated anomalous Northeast Asia cold vortex and strong East Asian summer monsoon, lead to above‐normal summer precipitation over Northeast Asia. The modelling results confirm that the multidecadal variability in the North Atlantic can cause the observed interdecadal variations of Northeast Asia summer precipitation. Our results suggest that to understand and predict interdecadal climate change over Northeast Asia, it is important to consider the key role of the AMO.

     
    more » « less
  4. Abstract

    In situ observation networks and reanalyses products of the state of the atmosphere and upper ocean show well-defined, large-scale patterns of coupled climate variability on time scales ranging from seasons to several decades. We summarize these phenomena and their physics, which have been revealed by analysis of observations, by experimentation with uncoupled and coupled atmosphere and ocean models with a hierarchy of complexity, and by theoretical developments. We start with a discussion of the seasonal cycle in the equatorial tropical Pacific and Atlantic Oceans, which are clearly affected by coupling between the atmosphere and the ocean. We then discuss the tropical phenomena that only exist because of the coupling between the atmosphere and the ocean: the Pacific and Atlantic meridional modes, the El Niño–Southern Oscillation (ENSO) in the Pacific, and a phenomenon analogous to ENSO in the Atlantic. For ENSO, we further discuss the sources of irregularity and asymmetry between warm and cold phases of ENSO, and the response of ENSO to forcing. Fundamental to variability on all time scales in the midlatitudes of the Northern Hemisphere are preferred patterns of uncoupled atmospheric variability that exist independent of any changes in the state of the ocean, land, or distribution of sea ice. These patterns include the North Atlantic Oscillation (NAO), the North Pacific Oscillation (NPO), and the Pacific–North American (PNA) pattern; they are most active in wintertime, with a temporal spectrum that is nearly white. Stochastic variability in the NPO, PNA, and NAO force the ocean on days to interannual times scales by way of turbulent heat exchange and Ekman transport, and on decadal and longer time scales by way of wind stress forcing. The PNA is partially responsible for the Pacific decadal oscillation; the NAO is responsible for an analogous phenomenon in the North Atlantic subpolar gyre. In models, stochastic forcing by the NAO also gives rise to variability in the strength of the Atlantic meridional overturning circulation (AMOC) that is partially responsible for multidecadal anomalies in the North Atlantic climate known as the Atlantic multidecadal oscillation (AMO); observations do not yet exist to adequately determine the physics of the AMO. We review the progress that has been made in the past 50 years in understanding each of these phenomena and the implications for short-term (seasonal-to-interannual) climate forecasts. We end with a brief discussion of advances of things that are on the horizon, under the rug, and over the rainbow.

     
    more » « less
  5. Earth’s climate fluctuates considerably on decadal-multidecadal time scales, often causing large damages to our society and environment. These fluctuations usually result from internal dynamics, and many studies have linked them to internal climate modes in the North Atlantic and Pacific oceans. Here, we show that variations in volcanic and anthropogenic aerosols have caused in-phase, multidecadal SST variations since 1920 across all ocean basins. These forced variations resemble the Atlantic Multidecadal Oscillation (AMO) in time. Unlike the North Atlantic, where indirect and direct aerosol effects on surface solar radiation drive the multidecadal SST variations, over the tropical central and western Pacific atmospheric circulation response to aerosol forcing plays an important role, whereas aerosol-induced radiation change is small. Our new finding implies that AMO-like climate variations in Eurasia, North America, and other regions may be partly caused by the aerosol forcing, rather than being originated from the North Atlantic SST variations as previously thought. 
    more » « less