skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Efficacy of chitosan/double-stranded RNA polyplex nanoparticles for gene silencing under variable environmental conditions
We investigated the ability of chitosan/double-stranded RNA polyplex nanoparticles to silence genes in Caenorhabditis elegans in different environmentally analogous media. Using fluorescence microscopy, we were able to rapidly assess gene knockdown and dsRNA uptake under numerous conditions. Scanning transmission electron micrographs of polyplexes confirms heterogeneous distribution of chitosan and RNA in single particles and a wide range of particle morphologies. High pH and the presence of natural organic matter inhibited the ability of polyplex nanoparticles to silence genes, but were unaffected by the presence of inorganic nitrate and phosphate. Environmental media did not affect particle size in any specific pattern, as determined by dynamic light scattering and fluorescence correlation spectroscopy. The efficacy of polyplexes seems to be closely tied to zeta potential, as all treatments that resulted in a net negative zeta potential (high pH and high natural organic matter) failed to achieve gene knockdown. These results support earlier work that emphasized the importance of charge in gene carriers and will aid in the development of effective gene silencing biological control agents.  more » « less
Award ID(s):
1712323
PAR ID:
10157599
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Environmental Science: Nano
Volume:
7
Issue:
5
ISSN:
2051-8153
Page Range / eLocation ID:
1582 to 1592
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract RNA interference (RNAi) is a promising technology for the development of next‐generation insect pest control products. Though RNAi is efficient and systemic in coleopteran insects, it is inefficient and variable in lepidopteron insects. In this study, we explored the possibility of improving RNAi in the fall armyworm (FAW),Spodoptera frugiperdaby conjugating double‐stranded RNA (dsRNA) with biodegradable chitosan (Chi). dsRNA conjugated with chitosan was protected from degradation by endonucleases present in Sf9 cell‐conditioned medium, hemolymph, and midgut lumen contents collected from the FAW larvae. Chi–dsRNA complexes showed reduced accumulation in the endosomes of Sf9 cells and FAW tissues. Exposing chitosan formulated dsRNA in Sf9 cells and the tissues induced a significant knockdown of endogenous genes. Chi–dsIAP fed to FAW larvae induced knockdown ofiapgene, growth retardation, and mortality. Processing of dsRNA into small interfering RNA was detected with chitosan‐conjugated32P‐UTP‐labeled ds green fluorescent protein in Sf9 cells and FAW larval tissues. Overall, these data suggest that dsRNA conjugated with chitosan helps dsRNA escape from the endosomes and improves RNAi efficiency in FAW cells and tissues. 
    more » « less
  2. pH-responsive polymeric nanoparticles are an exciting class of stimuli-responsive materials that can respond to changes in pH and, as a result, have been developed for numerous applications in biomedicine, such as the loading and delivery of various cargoes. One common transformation is nanoparticle swelling due to the protonation or deprotonation of specific side chain moieties in the polymer structure. When the pH trigger is removed, the swelling can be reversed, and this process can be continually cycled by adjusting the pH. In this work, we are leveraging this swelling–deswelling–reswelling mechanism to develop a simple, fast, and easy loading strategy for a class of cross-linked polymeric nanoparticles, poly-2-(diethylamino) ethyl methacrylate (pDEAEMA), that can reversibly swell below pH 7.3, and a dye, rhodamine B isothiocyanate (RITC), as a proof-of-concept cargo molecule while comparing to poly(methyl methacrylate) (pMMA) nanoparticles as a nonswelling control. A free radical polymerization was used to generate pDEAEMA nanoparticles at three different sizes by varying the synthesis temperature. Their pH-dependent swelling and deswelling were extensively characterized using dynamic light scattering and transmission electron microscopy, which revealed a reversible increase in size for pDEAEMA nanoparticles in acidic media, whereas pMMA nanoparticles remain constant. Following dye loading, pDEAEMA nanoparticles show significant fluorescence intensity when compared to pMMA nanoparticles, suggesting that the reversible swelling is key for successful loading. Upon acidic treatment, there is a significant decrease in the fluorescence intensity when compared to the dye-loaded nanoparticles in basic media, which could be due to dilution of the dye when released in the acidic medium solution. Interestingly, nanoparticle size had no impact on dye loading properties, suggesting that the dye molecules only go so far into the polymer nanoparticle. Additionally, confocal microscopy images reveal pDEAEMA nanoparticles with higher RITC fluorescence intensity in acidic media but a lower RITC fluorescence intensity in basic media, while pMMA nanoparticles show no differences. Together, these results showcase a size reversibility-driven cargo loading mechanism that has the potential to be applied to other beneficial cargoes and for various applications. 
    more » « less
  3. Parsek, Matthew (Ed.)
    ABSTRACT Many bacterial species typically live in complex three-dimensional biofilms, yet much remains unknown about differences in essential processes between nonbiofilm and biofilm lifestyles. Here, we created a CRISPR interference (CRISPRi) library of knockdown strains covering all known essential genes in the biofilm-forming Bacillus subtilis strain NCIB 3610 and investigated growth, biofilm colony wrinkling, and sporulation phenotypes of the knockdown library. First, we showed that gene essentiality is largely conserved between liquid and surface growth and between two media. Second, we quantified biofilm colony wrinkling using a custom image analysis algorithm and found that fatty acid synthesis and DNA gyrase knockdown strains exhibited increased wrinkling independent of biofilm matrix gene expression. Third, we designed a high-throughput screen to quantify sporulation efficiency after essential gene knockdown; we found that partial knockdowns of essential genes remained competent for sporulation in a sporulation-inducing medium, but knockdown of essential genes involved in fatty acid synthesis exhibited reduced sporulation efficiency in LB, a medium with generally lower levels of sporulation. We conclude that a subset of essential genes are particularly important for biofilm structure and sporulation/germination and suggest a previously unappreciated and multifaceted role for fatty acid synthesis in bacterial lifestyles and developmental processes. IMPORTANCE For many bacteria, life typically involves growth in dense, three-dimensional communities called biofilms that contain cells with differentiated roles held together by extracellular matrix. To examine how essential gene function varies between vegetative growth and the developmental states of biofilm formation and sporulation, we created and screened a comprehensive library of strains using CRISPRi to knockdown expression of each essential gene in the biofilm-capable Bacillus subtilis strain 3610. High-throughput assays and computational algorithms identified a subset of essential genes involved in biofilm wrinkling and sporulation and indicated that fatty acid synthesis plays important and multifaceted roles in bacterial development. 
    more » « less
  4. Ionic liquids are an interesting class of materials that have recently been utilized as chemotherapeutic agents in cancer therapy. Aniline blue, a commonly used biological staining agent, was used as a counter ion to trihexyltetradecylphosphonium, a known cytotoxic cation. A facile, single step ion exchange reaction was performed to synthesize a fluorescent ionic liquid, trihexyltetradecylphosphonium aniline blue. Aqueous nanoparticles of this hydrophobic ionic liquid were prepared using reprecipitationmethod. The newly synthesized ionic liquid and subsequent nanoparticles were characterized using various spectroscopic techniques. Transmission electron microscopy and zeta potential measurements were performed to characterize the nanoparticles’ morphology and surface charge. The photophysical properties of the nanoparticles and the parent aniline blue compound were studied using absorption and fluorescence spectroscopy. Cell viability studies were conducted to investigate the cytotoxicity of the newly developed trihexyltetradecylphosphonium aniline blue nanoparticles in human breast epithelial cancer cell line (MCF-7) and its corresponding normal epithelial cell line (MCF-10A) in vitro . The results revealed that the synthesized ionic nanomedicines were more cytotoxic (lower IC 50 ) than the parent chemotherapeutic compound in MCF-7 cells. Nanoparticles of the synthesized ionic liquid were also shown to be more stable in both aqueous and cellular media and more selective than parent compounds towards cancer cells. 
    more » « less
  5. Surface adsorption of two commonly detected emerging contaminants, amlodipine (AMP) and carbamazepine (CBZ), onto model colloidal microplastics, natural organic matter (NOM), and fullerene nanomaterials have been investigated. It is found that AMP accumulation at these colloidal–aqueous interfaces is markedly higher than that of CBZ. Measurements of surface excess and particle zeta potential, along with pH-dependent adsorption studies, reveal a distinct influence of colloidal functional group on the adsorption properties of these pharmaceuticals. AMP shows a clear preference for a surface containing carboxylic group compared to an amine modified surface. CBZ, in contrast, exhibit a pH-dependent surface proclivity for both of these microparticles. The type of interactions and molecular differences with respect to structural rigidity and charge properties explain these observed behaviors. In this work, we also demonstrate a facile approach in fabricating uniform microspheres coated with NOM and C 60 nanoclusters. Subsequent binding studies on these surfaces show considerable adsorption on the NOM surface but a minimal uptake of CBZ by C 60 . Adsorption induced colloidal aggregation was not observed. These findings map out the extent of contaminant removal by colloids of different surface properties available in the aquatic environment. The methodology developed for the adsorption study also opens up the possibility for further investigations into colloidal–contaminant interactions. 
    more » « less