skip to main content

Title: Near-infrared variability in dusty white dwarfs: tracing the accretion of planetary material
ABSTRACT The inwards scattering of planetesimals towards white dwarfs is expected to be a stochastic process with variability on human time-scales. The planetesimals tidally disrupt at the Roche radius, producing dusty debris detectable as excess infrared emission. When sufficiently close to the white dwarf, this debris sublimates and accretes on to the white dwarf and pollutes its atmosphere. Studying this infrared emission around polluted white dwarfs can reveal how this planetary material arrives in their atmospheres. We report a near-infrared monitoring campaign of 34 white dwarfs with infrared excesses with the aim to search for variability in the dust emission. Time series photometry of these white dwarfs from the United Kingdom Infrared Telescope (Wide Field Camera) in the J-, H-, and K-bands was obtained over baselines of up to 3 yr. We find no statistically significant variation in the dust emission in all three near-infrared bands. Specifically, we can rule out variability at ∼1.3 per cent for the 13 white dwarfs brighter than 16th mag in K-band, and at ∼10 per cent for the 32 white dwarfs brighter than 18th mag over time-scales of 3 yr. Although to date two white dwarfs, SDSS J095904.69−020047.6 and WD 1226+110, have shown K-band variability, in our sample we see no evidence of new K-band variability at these levels. One interpretation is that the tidal disruption events that lead to large variabilities are rare occur on short time-scales, and after a few years the white dwarfs return to being stable in the near-infrared.  more » « less
Award ID(s):
Author(s) / Creator(s):
;  ; ; ; ; ;
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Page Range / eLocation ID:
2861 to 2874
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The presence of the apparently extended hard (2–10 keV) X-ray emission along the Galactic plane has been known since the early 1980s. With a deep X-ray exposure using the Chandra X-ray Observatory of a slightly off-plane region in the Galactic bulge, most of the extended emission was resolved into faint discrete X-ray sources in the Fe K band (Revnivtsev et al. 2009, Nature, 458, 1142). The major constituents of these sources have long been considered to be X-ray active stars and magnetic cataclysmic variables (CVs). However, recent works including our near-infrared (NIR) imaging and spectroscopic studies (Morihana et al. 2013, ApJ, 766, 14; Morihana et al. 2016, PASJ, 68, 57) argue that other populations should be more dominant. To investigate this further, we conducted a much deeper NIR imaging observation at the center of the Chandra’s exposure field. We have used the MOIRCS on the Subaru telescope, reaching the limiting magnitude of ∼18 mag in the J, H, and Ks bands in this crowded region, and identified ${\sim}50\%$ of the X-ray sources with NIR candidate counterparts. We classified the X-ray sources into three groups (A, B, and C) based on their positions in the X-ray color–color diagram and characterized them based on the X-ray and NIR features. We argue that the major populations of the Group A and C sources are, respectively, CVs (binaries containing magnetic or non-magnetic white dwarfs with high accretion rates) and X-ray active stars. The major population of the Group B sources is presumably white dwarf (WD) binaries with low mass accretion rates. The Fe K equivalent width in the composite X-ray spectrum of the Group B sources is the largest among the three and comparable to that of the Galactic bulge X-ray emission. This leads us to speculate that there are numerous WD binaries with low mass accretion rates which are not recognized as CVs but are the major contributor of the apparently extended X-ray emission.

    more » « less
  2. ABSTRACT Studies of T Tauri discs inform planet formation theory; observations of variability due to occultation by circumstellar dust are a useful probe of unresolved, planet-forming inner discs, especially around faint M dwarf stars. We report observations of 2M0632, an M dwarf member of the Carina young moving group that was observed by Transiting Exoplanet Survey Satellite over two 1-yr intervals. The combined light curve contains >300 dimming events, each lasting a few hours, and as deep as 40 per cent (0.55 magnitudes). These stochastic events are correlated with a distinct, stable 1.86-d periodic signal that could be stellar rotation. Concurrent ground-based, multiband photometry show reddening consistent with interstellar medium-like dust. The star’s excess emission in the infrared and emission lines in optical and infrared spectra reveal a T Tauri-like accretion disc around the star. We confirm membership of 2M0632 in the Carina group by a Bayesian analysis of its Galactic space motion and position. We combine stellar evolution models with Gaia photometry and constraints on Teff, luminosity, and the absence of detectable lithium in the photosphere to constrain the age of the group and 2M0632 to 40–60 Myr, consistent with earlier estimates. 2M0632 joins a handful of long-lived discs which challenge the canon that disc lifetimes are ≲10 Myr. All known examples surround M dwarfs, suggesting that lower X-ray/ultraviolet irradiation and slower photoevaporation by these stars can dramatically affect disc evolution. The multiplanet systems spawned by long-lived discs probably experienced significant orbital damping and migration into close-in, resonant orbits, and perhaps represented by the TRAPPIST-1 system. 
    more » « less
  3. ABSTRACT White dwarfs are one of the few types of stellar object for which we have yet to confirm the existence of companion planets. Recent evidence for metal contaminated atmospheres, circumstellar debris discs, and transiting planetary debris all indicates that planets may be likely. However, white dwarf transit surveys are challenging due to the intrinsic faintness of such objects, the short time-scale of the transits, and the low transit probabilities due to their compact radii. The Large Synoptic Survey Telescope (LSST) offers a remedy to these problems as a deep, half-sky survey with fast exposures encompassing approximately 10 million white dwarfs with r < 24.5 apparent magnitude (mr). We simulate LSST photometric observations of 3.5 million white dwarfs over a 10 yr period and calculate the detectability of companion planets with P < 10 d via transits. We find typical detection rates in the range of 5 × 10−6 to 4 × 10−4 for Ceres-sized bodies to Earth-sized worlds, yielding ∼50–$4000$ detections for a 100 per cent occurrence rate of each. For terrestrial planets in the continuously habitable zone, we find detection rates of ∼10−3 indicating that LSST would reveal hundreds of such worlds for occurrence rates in the range of 1–10 per cent. 
    more » « less

    We report the flux and spectral variability of PG 1553 + 113 on intra-night (IDV) to short-term time-scales using BVRI data collected over 91 nights from 28 February to 8 November 2019 employing 10 optical telescopes: three in Bulgaria, two each in India and Serbia, and one each in Greece, Georgia, and Latvia. We monitored the blazar quasi-simultaneously for 16 nights in the V and R bands and 8 nights in the V, R, I bands and examined the light curves (LCs) for intra-day flux and colour variations using two powerful tests: the power-enhanced F-test and the nested ANOVA test. The source was found to be significantly (>99 per cent) variable in 4 nights out of 27 in R-band, 1 out of 16 in V-band, and 1 out of 6 nights in I-band. No temporal variations in the colours were observed on IDV time-scale. During the course of these observations the total variation in R-band was 0.89 mag observed. We also investigated the spectral energy distribution (SED) using B-, V-, R-, and I-band data. We found optical spectral indices in the range of 0.878 ± 0.029 to 1.106 ± 0.065 by fitting a power law (Fν∝ν−α) to these SEDs of PG 1553 + 113. We found that the source follows a bluer-when-brighter trend on IDV time-scales. We discuss possible physical causes of the observed spectral variability.

    more » « less

    Previous surveys in the far-infrared have found very few, if any, M-dwarf debris discs among their samples. It has been questioned whether M-dwarf discs are simply less common than earlier types, or whether the low detection rate derives from the wavelengths and sensitivities available to those studies. The highly sensitive, long-wavelength Atacama Large Millimetre/submillimetre Array (ALMA) can shed light on the problem. This paper presents a survey of M-dwarf stars in the young and nearby Beta Pictoris Moving Group with ALMA at Band 7 (880 μm). From the observational sample, we detect two new sub-mm excesses that likely constitute unresolved debris discs around GJ 2006 A and AT Mic A and model distributions of the disc fractional luminosities and temperatures. From the science sample of 36 M-dwarfs including AU Mic, we find a disc detection rate of 4/36 or 11.1$^{+7.4}_{-3.3}$ per cent that rises to 23.1$^{+8.3}_{-5.5}$ per cent when adjusted for completeness. We conclude that this detection rate is consistent with the detection rate of discs around G- and K-type stars and that the disc properties are also likely consistent with earlier type stars. We additionally conclude that M-dwarf stars are not less likely to host debris discs, but instead their detection requires longer wavelength and higher sensitivity observations than have previously been employed.

    more » « less