- Award ID(s):
- 1800975
- NSF-PAR ID:
- 10157663
- Date Published:
- Journal Name:
- Physical Chemistry Chemical Physics
- Volume:
- 21
- Issue:
- 31
- ISSN:
- 1463-9076
- Page Range / eLocation ID:
- 16949 to 16980
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Pure methane (CH 4 ) ices processed by energetic electrons under ultra-high vacuum conditions to simulate secondary electrons formed via galactic cosmic rays (GCRs) penetrating interstellar ice mantles have been shown to produce an array of complex hydrocarbons with the general formulae: C n H 2n+2 ( n = 4–8), C n H 2n ( n = 3–9), C n H 2n−2 ( n = 3–9), C n H 2n−4 ( n = 4–9), and C n H 2n−6 ( n = 6–7). By monitoring the in situ chemical evolution of the ice combined with temperature programmed desorption (TPD) studies and tunable single photon ionization coupled to a reflectron time-of-flight mass spectrometer, specific isomers of C 3 H 4 , C 3 H 6 , C 4 H 4 , and C 4 H 6 were probed. These experiments confirmed the synthesis of methylacetylene (CH 3 CCH), propene (CH 3 CHCH 2 ), cyclopropane (c-C 3 H 6 ), vinylacetylene (CH 2 CHCCH), 1-butyne (HCCC 2 H 5 ), 2-butyne (CH 3 CCCH 3 ), 1,2-butadiene (H 2 CCCH(CH 3 )), and 1,3-butadiene (CH 2 CHCHCH 2 ) with yields of 2.17 ± 0.95 × 10 −4 , 3.7 ± 1.5 × 10 −3 , 1.23 ± 0.77 × 10 −4 , 1.28 ± 0.65 × 10 −4 , 4.01 ± 1.98 × 10 −5 , 1.97 ± 0.98 × 10 −4 , 1.90 ± 0.84 × 10 −5 , and 1.41 ± 0.72 × 10 −4 molecules eV −1 , respectively. Mechanistic studies exploring the formation routes of methylacetylene, propene, and vinylacetylene were also conducted, and revealed the additional formation of the 1,2,3-butatriene isomer. Several of the above isomers, methylacetylene, propene, vinylacetylene, and 1,3-butadiene, have repeatedly been shown to be important precursors in the formation of polycyclic aromatic hydrocarbons (PAHs), but until now their interstellar synthesis has remained elusive.more » « less
-
Abstract Carbonyl-bearing complex organic molecules (COMs) in the interstellar medium (ISM) are of significant importance due to their role as potential precursors to biomolecules. Simple aldehydes and ketones like acetaldehyde, acetone, and propanal have been recognized as fundamental molecular building blocks and tracers of chemical processes involved in the formation of distinct COMs in molecular clouds and star-forming regions. Although previous laboratory simulation experiments and modeling established the potential formation pathways of interstellar acetaldehyde and propanal, the underlying formation routes to the simplest ketone—acetone—in the ISM are still elusive. Herein, we performed a systematic study to unravel the synthesis of acetone, its propanal and propylene oxide isomers, as well as the propenol tautomers in interstellar analog ices composed of methane and acetaldehyde along with isotopic-substitution studies to trace the reaction pathways of the reactive intermediates. Chemical processes in the ices were triggered at 5.0 K upon exposure to proxies of Galactic cosmic rays in the form of energetic electrons. The products were detected isomer-selectively via vacuum ultraviolet (VUV) photoionization reflectron time-of-flight mass spectrometry. In our experiments, the branching ratio of acetone (CH3COCH3):propylene oxide (
c -CH3CHOCH2):propanal (CH3CH2CHO) was determined to be (4.82 ± 0.05):(2.86 ± 0.13):1. The radical–radical recombination reaction leading to acetone emerged as the dominant channel. The propenols appeared only at a higher radiation dose via keto–enol tautomerization. The current study provides mechanistic information on the fundamental nonequilibrium pathways that may be responsible for the formation of acetone and its (enol) isomers inside the interstellar icy grains. -
Context. The detection of a branched alkyl molecule in the high-mass star forming protocluster Sagittarius (Sgr) B2(N) permitted by the advent of the Atacama Large Millimeter/submillimeter Array (ALMA) revealed a new dimension of interstellar chemistry. Astrochemical simulations subsequently predicted that beyond a certain degree of molecular complexity, branched molecules could even dominate over their straight-chain isomers. Aims. More generally, we aim to probe further the presence in the interstellar medium of complex organic molecules with the capacity to exhibit both a normal and iso form, via the attachment of a functional group to either a primary or secondary carbon atom. Methods. We used the imaging spectral line survey ReMoCA performed with ALMA at high angular resolution and the results of a recent spectroscopic study of propanol to search for the iso and normal isomers of this molecule in the hot molecular core Sgr B2(N2). We analyzed the interferometric spectra under the assumption of local thermodynamical equilibrium. We expanded the network of the astrochemical model MAGICKAL to explore the formation routes of propanol and put the observational results in a broader astrochemical context. Results. We report the first interstellar detection of iso-propanol, ¿-C 3 H 7 OH, toward a position of Sgr B2(N2) that shows narrow linewidths. We also report the first secure detection of the normal isomer of propanol, n-C 3 H 7 OH, in a hot core. Iso-propanol is found to be nearly as abundant as normal-propanol, with an abundance ratio of 0.6 which is similar to the ratio of 0.4 that we obtained previously for iso- and normal-propyl cyanide in Sgr B2(N2) at lower angular resolution with our previous ALMA survey, EMoCA. The observational results are in good agreement with the outcomes of our astrochemical models, which indicate that the OH-radical addition to propylene in dust-grain ice mantles, driven by water photodissociation, can produce appropriate quantities of normal- and iso-propanol. The normal-to-iso ratio in Sgr B2(N2) may be a direct inheritance of the branching ratio of this reaction process. Conclusions. The detection of normal- and iso-propanol and their ratio indicate that the modest preference for the normal form of propyl cyanide determined previously may be a more general feature among similarly sized interstellar molecules. Detecting other pairs of interstellar organic molecules with a functional group attached either to a primary or secondary carbon may help in pinning down the processes that dominate in setting their normal-to-iso ratios. Butanol and its isomers would be the next obvious candidates in the alcohol family, but their detection in hot cores will be challenging.more » « less
-
Abstract The formation of complex organic molecules by simulated secondary electrons generated in the track of galactic cosmic rays was investigated in interstellar ice analogs composed of methanol and carbon dioxide. The processed ices were subjected to temperature-programmed desorption to mimic the transition of a cold molecular cloud to a warmer star-forming region. Reaction products were detected as they sublime using photoionization reflectron time-of-flight mass spectrometry. By employing isotopic labeling, tunable photoionization and computed adiabatic ionization energies isomers of C2H4O3were investigated. Product molecules carbonic acid monomethyl ester (CH3OCOOH) and glycolic acid (HOCH2COOH) were identified. The abundance of the reactants detected in analog interstellar ices and the low irradiation dose necessary to form these products indicates that these molecules are exemplary candidates for interstellar detection. Molecules sharing a tautomeric relationship with glycolic acid, dihydroxyacetaldehyde ((OH)2CCHO), and the enol ethenetriol (HOCHC(OH)2), were not found to form despite ices being subjected to conditions that have successfully produced tautomerization in other ice analog systems.
-
By varying the halogen-bond-donor molecule, 11 new halogen-bonding cocrystals involving thiourea or 1,3-dimethylthiourea were obtained, namely, 1,3-dimethylthiourea–1,2-diiodo-3,4,5,6-tetrafluorobenzene (1/1), C 6 F 4 I 2 ·C 3 H 8 N 2 S, 1 , thiourea–1,3-diiodo-2,4,5,6-tetrafluorobenzene (1/1), C 6 F 4 I 2 ·CH 4 N 2 S, 2 , 1,3-dimethylthiourea–1,3-diiodo-2,4,5,6-tetrafluorobenzene (1/1), C 6 F 4 I 2 ·C 3 H 8 N 2 S, 3 , 1,3-dimethylthiourea–1,3-diiodo-2,4,5,6-tetrafluorobenzene–methanol (1/1/1), C 6 F 4 I 2 ·C 3 H 8 N 2 S·CH 4 O, 4 , 1,3-dimethylthiourea–1,3-diiodo-2,4,5,6-tetrafluorobenzene–ethanol (1/1/1), C 6 F 4 I 2 ·C 3 H 8 N 2 S·C 2 H 6 O, 5 , 1,3-dimethylthiourea–1,4-diiodo-2,3,5,6-tetrafluorobenzene (1/1), C 6 F 4 I 2 ·C 3 H 8 N 2 S, 6 , 1,3-dimethylthiourea–1,3,5-trifluoro-2,4,6-triiodobenzene (1/1), C 6 F 3 I 3 ·C 3 H 8 N 2 S, 7 , 1,3-dimethylthiourea–1,1,2,2-tetraiodoethene (1/1), C 6 H 16 N 4 S 2 ·C 2 I 4 , 8 , [(dimethylamino)methylidene](1,2,2-triiodoethenyl)sulfonium iodide–1,1,2,2-tetraiodoethene–acetone (1/1/1), C 5 H 8 I 3 N 2 S + ·I − ·C 3 H 6 O·C 2 I 4 , 9 , 2-amino-4-methyl-1,3-thiazol-3-ium iodide–1,1,2,2-tetraiodoethene (2/3), 2C 4 H 7 N 2 S + ·2I − ·3C 2 I 4 , 10 , and 4,4-dimethyl-4 H -1,3,5-thiadiazine-3,5-diium diiodide–1,1,2,2-tetraiodoethene (2/3), 2C 5 H 12 N 4 S 2+ ·4I − ·3C 2 I 4 , 11 . When utilizing the common halogen-bond-donor molecules 1,2-, 1,3-, and 1,4-diiodotetrafluorobenzene, as well as 1,3,5-trifluoro-2,4,6-triiodobenzene, bifurcated I...S...I interactions were observed, resulting in the formation of isolated rings, chains, and sheets. Tetraiodoethylene (TIE) provided I...S...I cocrystals as well, but further yielded a sulfonium-containing product through the reaction of the S atom with TIE. This particular sulfonium motif is the first of its kind to be structurally characterized, and is stabilized in the solid state through a three-dimensional I...I halogen-bonding network. Thiourea reacted with acetone in the presence of TIE to provide two novel heterocyclic products, again stabilized in the solid state through I...I halogen bonding.more » « less