skip to main content

Title: Chip‐Based Optical Isolator and Nonreciprocal Parity‐Time Symmetry Induced by Stimulated Brillouin Scattering
Realization of chip‐scale nonreciprocal optics such as isolators and circulators is highly demanding for all‐optical signal routing and protection with standard photonics foundry process. Owing to the significant challenge for incorporating magneto‐optical materials on chip, the exploration of magnetic‐free alternatives has become exceedingly imperative in integrated photonics. Here, a chip‐based, tunable all‐optical isolator at the telecommunication band is demonstrated, which is based upon bulk stimulated Brillouin scattering (SBS) in a high‐Q silica microtoroid resonator. This device exhibits remarkable characteristics over most state‐of‐the‐art implements, including high isolation ratio, no insertion loss, and large working power range. Thanks to the guided acoustic wave and accompanying momentum‐conservation condition, bulk SBS also assist in realizing the nonreciprocal parity‐time symmetry in two directly coupled microresonators. The breach of time‐reversal symmetry further makes the design a versatile arena for developing many formidable ultra‐compact devices such as unidirectional single‐mode Brillouin lasers and supersensitive photonic sensors.
Authors:
; ; ; ; ; ;
Award ID(s):
1806519 1741693
Publication Date:
NSF-PAR ID:
10157668
Journal Name:
Laser photonics reviews
Volume:
14
Issue:
5
Page Range or eLocation-ID:
1900278
ISSN:
1863-8899
Sponsoring Org:
National Science Foundation
More Like this
  1. Synthetic photonic materials created by engineering the profile of refractive index or gain/loss distribution, such as negative-index metamaterials or parity-time-symmetric structures, can exhibit electric and magnetic properties that cannot be found in natural materials, allowing for photonic devices with unprecedented functionalities. In this article, we discuss two directions along this line—non-Hermitian photonics and topological photonics—and their applications in nonreciprocal light transport when nonlinearities are introduced. Both types of synthetic structures have been demonstrated in systems involving judicious arrangement of optical elements, such as optical waveguides and resonators. They can exhibit a transition between different phases by adjusting certain parameters, suchmore »as the distribution of refractive index, loss, or gain. The unique features of such synthetic structures help realize nonreciprocal optical devices with high contrast, low operation threshold, and broad bandwidth. They provide promising opportunities to realize nonreciprocal structures for wave transport.« less
  2. Abstract

    Nonreciprocal directional dichroism is an unusual light–matter interaction that gives rise to diode-like behavior in low-symmetry materials. The chiral varieties are particularly scarce due to the requirements for strong spin–orbit coupling, broken time-reversal symmetry, and a chiral axis. Here we bring together magneto-optical spectroscopy and first-principles calculations to reveal high-energy, broadband nonreciprocal directional dichroism in Ni3TeO6with special focus on behavior in the metamagnetic phase above 52 T. In addition to demonstrating this effect in the magnetochiral configuration, we explore the transverse magnetochiral orientation in which applied field and light propagation are orthogonal to the chiral axis and, by so doing,more »uncover an additional configuration with a unique nonreciprocal response in the visible part of the spectrum. In a significant conceptual advance, we use first-principles methods to analyze how the Ni2+d-to-don-site excitations develop magneto-electric character and present a microscopic model that unlocks the door to theory-driven discovery of chiral magnets with nonreciprocal properties.

    « less
  3. Abstract Analog photonic solutions offer unique opportunities to address complex computational tasks with unprecedented performance in terms of energy dissipation and speeds, overcoming current limitations of modern computing architectures based on electron flows and digital approaches. The lack of modularization and lumped element reconfigurability in photonics has prevented the transition to an all-optical analog computing platform. Here, we explore, using numerical simulation, a nanophotonic platform based on epsilon-near-zero materials capable of solving in the analog domain partial differential equations (PDE). Wavelength stretching in zero-index media enables highly nonlocal interactions within the board based on the conduction of electric displacement, whichmore »can be monitored to extract the solution of a broad class of PDE problems. By exploiting the experimentally achieved control of deposition technique through process parameters, used in our simulations, we demonstrate the possibility of implementing the proposed nano-optic processor using CMOS-compatible indium-tin-oxide, whose optical properties can be tuned by carrier injection to obtain programmability at high speeds and low energy requirements. Our nano-optical analog processor can be integrated at chip-scale, processing arbitrary inputs at the speed of light.« less
  4. Abstract

    Microresonator solitons are critical to miniaturize optical frequency combs to chip scale and have the potential to revolutionize spectroscopy, metrology and timing. With the reduction of resonator diameter, high repetition rates up to 1 THz become possible, and they are advantageous to wavelength multiplexing, coherent sampling, and self-referencing. However, the detection of comb repetition rate, the precursor to all comb-based applications, becomes challenging at these repetition rates due to the limited bandwidth of photodiodes and electronics. Here, we report a dual-comb Vernier frequency division method to vastly reduce the required electrical bandwidth. Free-running 216 GHz “Vernier” solitons sample andmore »divide the main soliton’s repetition frequency from 197 GHz to 995 MHz through electrical processing of a pair of low frequency dual-comb beat notes. Our demonstration relaxes the instrumentation requirement for microcomb repetition rate detection, and could be applied for optical clocks, optical frequency division, and microwave photonics.

    « less
  5. The existing concepts of non-reciprocity in propagation of acoustic or elastic waves are based either on nonlinear effects, or on local circulation of linear elastic fluid that leads to red or blue Doppler shift, depending on the direction of sound wave. The same concepts exist for electromagnetic non-reciprocity, where external magnetic field may produce the effect similar to local rotation of the medium. These two concepts originate from two known methods of breaking a time-reversal symmetry (T-symmetry), that is necessary for observation of nonreciprocal wave propagation. Both concepts require additional electrical or mechanical devices to be installed with their ownmore »power sources. Here we propose to explore viscosity of fluid as a natural factor of the T-symmetry breaking through energy dissipation. We report experimental observation of the nonreciprocal transmission of ultrasound through a water-submerged phononic crystals consisting of several layers of aluminum rods arranged in a square lattice. While viscous losses break the T-symmetry, making the wave propagation thermodynamically irreversible, the transmission remains reciprocal if the scatterers are symmetrical. To generate different energy losses for opposite directions of propagation, the P-symmetry of the crystal is broken by using asymmetric scatterers. Due to asymmetry, two sound waves propagating in the opposite directions produce different distributions of velocity and pressure that leads to different local absorption. Dissipation of acoustic energy occurs mostly near the surface of the scatterers and it strongly depends on surface roughnesses. Using two phononic crystal with smooth and rough aluminum rods we demonstrate low (2-5 dB) and high (10-15 dB) level of non-reciprocity within a wide range of frequencies, 300-600 kHz. Experimental results are in agreement with numerical simulations based on the Navier-Stokes equation. This nonreciprocal linear device is very cheap, robust and does not require energy source.« less