skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: An Assessment of PET Dose Reduction with Penalized Likelihood Image Reconstruction using a Computationally Efficient Model Observer
Developing PET reconstruction algorithms with improved low-count capabilities may provide a timely and costeffective means of reducing radiation dose in promising clinical applications such as immuno-PET that require long-lived radiotracers. For many PET clinics, the reconstruction protocol consists of postsmoothed ordered-sets expectation-maximization (OSEM) reconstruction, but penalized likelihood methods based on total-variation (TV) regularization could substantially reduce dose. We performed a task-based comparison of postsmoothed OSEM and higher-order TV (HOTV) reconstructions using simulated images of a contrast-detail phantom. An anthropomorphic visual-search model observer read the images in a location-known receiver operating characteristic (ROC) format. Acquisition counts, target uptake, and target size were study variables, and the OSEM postfiltering was task-optimized based on count level. A psychometric analysis of observer performance for the selected task found that the HOTV algorithm allowed a two-fold reduction in dose compared to the optimized OSEM algorithm.  more » « less
Award ID(s):
1912958
PAR ID:
10157755
Author(s) / Creator(s):
Date Published:
Journal Name:
Medical Imaging 2020: Physics of Medical Imaging
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Deep learning based PET image reconstruction methods have achieved promising results recently. However, most of these methods follow a supervised learning paradigm, which rely heavily on the availability of high-quality training labels. In particular, the long scanning time required and high radiation exposure associated with PET scans make obtaining these labels impractical. In this paper, we propose a dual-domain unsupervised PET image reconstruction method based on learned descent algorithm, which reconstructs high-quality PET images from sinograms without the need for image labels. Specifically, we unroll the proximal gradient method with a learnable norm for PET image reconstruction problem. The training is unsupervised, using measurement domain loss based on deep image prior as well as image domain loss based on rotation equivariance property. The experimental results demonstrate the superior performance of proposed method compared with maximum-likelihood expectation-maximization (MLEM), total-variation regularized EM (EM-TV) and deep image prior based method (DIP). 
    more » « less
  2. Objective. Dynamic positron emission tomography (PET) imaging, which can provide information on dynamic changes in physiological metabolism, is now widely used in clinical diagnosis and cancer treatment. However, the reconstruction from dynamic data is extremely challenging due to the limited counts received in individual frame, especially in ultra short frames. Recently, the unrolled modelbased deep learning methods have shown inspiring results for low-count PET image reconstruction with good interpretability. Nevertheless, the existing model-based deep learning methods mainly focus on the spatial correlations while ignore the temporal domain. Approach. In this paper, inspired by the learned primal dual (LPD) algorithm, we propose the spatio-temporal primal dual network (STPDnet) for dynamic low-count PET image reconstruction. Both spatial and temporal correlations are encoded by 3D convolution operators. The physical projection of PET is embedded in the iterative learning process of the network, which provides the physical constraints and enhances interpretability. Main results. The experiments of both simulation data and real rat scan data have shown that the proposed method can achieve substantial noise reduction in both temporal and spatial domains and outperform the maximum likelihood expectation maximization, spatio-temporal kernel method, LPD and FBPnet. Significance. Experimental results show STPDnet better reconstruction performance in the low count situation, which makes the proposed method particularly suitable in whole-body dynamic imaging and parametric PET imaging that require extreme short frames and usually suffer from high level of noise. 
    more » « less
  3. Positronium Lifetime Image (PLI) reconstruction is a technique used in time-of-flight (TOF) Positron emission tomography (PET) imaging that involves measuring the lifespan of positronium, which is a metastable electron-positron pair that arises when a PET molecule releases a positron, prior to its annihilation. In our previous work, we demonstrated that our proposed maximum likelihood (ML) algorithm for PLI reconstruction can generate quantitatively accurate lifetime images for a 570 ps TOF PET system. In this study, we conducted further investigations into the statistical properties of the algorithm, including the variability of the reconstruction results, the sensitivity of the algorithm to the number of acquired PLI events and its robustness to hyperparameter choices. Our findings indicate that the proposed ML method produces sufficiently stable lifetime images to enable reliable distinction of regions of interest and the number of PLI events required to produce quantitatively accurate lifetime images is computationally plausible. These results demonstrate the potential of our ML algorithm for advancing the capabilities of TOF PET imaging. 
    more » « less
  4. The positronium lifetime imaging (PLI) reconstruction is a technique used in time-of-flight (TOF) positron emission tomography (PET) imaging that involves measuring the lifespan of positronium, which is a metastable electron-positron pair that arises when a PET molecule releases a positron, prior to its annihilation. We have previously developed a maximum likelihood (ML) algorithm for PLI reconstruction and demonstrated that it can generate quantitatively accurate lifetime images for a 570 ps (pico-seconds) TOF PET system. In this study, we conducted further investigations into the statistical properties of the algorithm, including the variability of the reconstruction results, the sensitivity of the algorithm to the number of acquired PLI events and its robustness to hyperparameter choices. Our findings indicate that the proposed ML method produces sufficiently stable lifetime images to enable reliable distinction of regions of interest. Moreover, the number of PLI events required to produce quantitatively accurate lifetime images is computationally plausible. These results demonstrate the potential of our ML algorithm for advancing the capabilities of TOF PET imaging. 
    more » « less
  5. Abstract PurposeThe constrained one‐step spectral CT image reconstruction (cOSSCIR) algorithm with a nonconvex alternating direction method of multipliers optimizer is proposed for addressing computed tomography (CT) metal artifacts caused by beam hardening, noise, and photon starvation. The quantitative performance of cOSSCIR is investigated through a series of photon‐counting CT simulations. MethodscOSSCIR directly estimates basis material maps from photon‐counting data using a physics‐based forward model that accounts for beam hardening. The cOSSCIR optimization framework places constraints on the basis maps, which we hypothesize will stabilize the decomposition and reduce streaks caused by noise and photon starvation. Another advantage of cOSSCIR is that the spectral data need not be registered, so that a ray can be used even if some energy window measurements are unavailable. Photon‐counting CT acquisitions of a virtual pelvic phantom with low‐contrast soft tissue texture and bilateral hip prostheses were simulated. Bone and water basis maps were estimated using the cOSSCIR algorithm and combined to form a virtual monoenergetic image for the evaluation of metal artifacts. The cOSSCIR images were compared to a “two‐step” decomposition approach that first estimated basis sinograms using a maximum likelihood algorithm and then reconstructed basis maps using an iterative total variation constrained least‐squares optimization (MLE+TV). Images were also compared to a nonspectral TV reconstruction of the total number of counts detected for each ray with and without normalized metal artifact reduction (NMAR) applied. The simulated metal density was increased to investigate the effects of increasing photon starvation. The quantitative error and standard deviation in regions of the phantom were compared across the investigated algorithms. The ability of cOSSCIR to reproduce the soft‐tissue texture, while reducing metal artifacts, was quantitatively evaluated. ResultsNoiseless simulations demonstrated the convergence of the cOSSCIR and MLE+TV algorithms to the correct basis maps in the presence of beam‐hardening effects. When noise was simulated, cOSSCIR demonstrated a quantitative error of −1 HU, compared to 2 HU error for the MLE+TV algorithm and −154 HU error for the nonspectral TV+NMAR algorithm. For the cOSSCIR algorithm, the standard deviation in the central iodine region of interest was 20 HU, compared to 299 HU for the MLE+TV algorithm, 41 HU for the MLE+TV+Mask algorithm that excluded rays through metal, and 55 HU for the nonspectral TV+NMAR algorithm. Increasing levels of photon starvation did not impact the bias or standard deviation of the cOSSCIR images. cOSSCIR was able to reproduce the soft‐tissue texture when an appropriate regularization constraint value was selected. ConclusionsBy directly inverting photon‐counting CT data into basis maps using an accurate physics‐based forward model and a constrained optimization algorithm, cOSSCIR avoids metal artifacts due to beam hardening, noise, and photon starvation. The cOSSCIR algorithm demonstrated improved stability and accuracy compared to a two‐step method of decomposition followed by reconstruction. 
    more » « less