skip to main content

Title: Protecting the 4G and 5G Cellular Paging Protocols against Security and Privacy Attacks
Abstract This paper focuses on protecting the cellular paging protocol — which balances between the quality-of-service and battery consumption of a device — against security and privacy attacks. Attacks against this protocol can have severe repercussions, for instance, allowing attacker to infer a victim’s location, leak a victim’s IMSI, and inject fabricated emergency alerts. To secure the protocol, we first identify the underlying design weaknesses enabling such attacks and then propose efficient and backward-compatible approaches to address these weaknesses. We also demonstrate the deployment feasibility of our enhanced paging protocol by implementing it on an open-source cellular protocol library and commodity hardware. Our evaluation demonstrates that the enhanced protocol can thwart attacks without incurring substantial overhead.
Authors:
; ; ; ;
Award ID(s):
1719369
Publication Date:
NSF-PAR ID:
10157818
Journal Name:
Proceedings on Privacy Enhancing Technologies
Volume:
2020
Issue:
1
Page Range or eLocation-ID:
126 to 142
ISSN:
2299-0984
Sponsoring Org:
National Science Foundation
More Like this
  1. The lack of authentication protection for bootstrapping messages broadcast by base-stations makes impossible for devices to differentiate between a legitimate and a fake base-station. This vulnerability has been widely acknowledged, but not yet fixed and thus enables law-enforcement agencies, motivated adversaries, and nation-states to carry out attacks against targeted users. Although 5G cellular protocols have been enhanced to prevent some of these attacks, the root vulnerability for fake base-stations still exists. In this paper, we propose an efficient broadcast authentication protocol based on a hierarchical identity-based signature scheme, Schnorr-HIBS, which addresses the root cause of the fake base-station problem with minimal computation and communication overhead. We implement and evaluate our proposed protocol using off-the-shelf software-defined radios and open-source libraries. We also provide a comprehensive quantitative and qualitative comparison between our scheme and other candidate solutions for 5G base-station authentication proposed by 3GPP. Our proposed protocol achieves at least a 6x speedup in terms of end-to-end cryptographic delay and a communication cost reduction of 31% over other 3GPP proposals.
  2. Distributed reflective denial of service (DRDoS) attacks are a popular choice among adversaries. In fact, one of the largest DDoS attacks ever recorded, reaching a peak of 1.3 Tbps against GitHub, was a memcached-based DRDoS attack. More recently, a record-breaking 2.3 Tbps attack against Amazon AWS was due to a CLDAP-based DRDoS attack. Although reflective attacks have been known for years, DRDoS attacks are unfortunately still popular and largely unmitigated. In this paper, we measure in-the-wild DRDoS attacks as observed from a large Internet exchange point (IXP) and provide a number of security-relevant insights. To enable our measurements, we first developed IXmon, an open-source DRDoS detection system specifically designed for deployment at large IXP-like network connectivity providers and peering hubs. We deployed IXmon at Southern Crossroads (SoX), an IXP-like hub that provides both peering and upstream Internet connectivity services to more than 20 research and education (R&E) networks in the South-East United States. In a period of about 21 months, IXmon detected more than 900 DRDoS attacks towards 31 different victim ASes. An analysis of the real-world DRDoS attacks detected by our system shows that most DRDoS attacks are short lived, lasting only a few minutes, but that large-volume, long-lasting,more »and highly-distributed attacks against R&E networks are not uncommon. We then use the results of our analysis to discuss possible attack mitigation approaches that can be deployed at the IXP level, before the attack traffic overwhelms the victim’s network bandwidth.« less
  3. In this paper, we investigate the security and privacy of the three critical procedures of the 4G LTE protocol (i.e., attach, detach, and paging), and in the process, uncover potential design flaws of the protocol and unsafe practices employed by the stakeholders. For exposing vulnerabilities, we propose a model-based testing approach LTEInspector which lazily combines a symbolic model checker and a cryptographic protocol verifier in the symbolic attacker model. Using LTEInspector, we have uncovered 10 new attacks along with 9 prior attacks, categorized into three abstract classes (i.e., security, user privacy, and disruption of service), in the three procedures of 4G LTE. Notable among our findings is the authentication relay attack that enables an adversary to spoof the location of a legitimate user to the core network without possessing appropriate credentials. To ensure that the exposed attacks pose real threats and are indeed realizable in practice, we have validated 8 of the 10 new attacks and their accompanying adversarial assumptions through experimentation in a real testbed.
  4. In this paper, we investigate the security and privacy of the three critical procedures of the 4G LTE protocol (i.e., attach, detach, and paging), and in the process, uncover potential design flaws of the protocol and unsafe practices employed by the stakeholders. For exposing vulnerabilities, we propose a modelbased testing approach LTEInspector which lazily combines a symbolic model checker and a cryptographic protocol verifier in the symbolic attacker model. Using LTEInspector, we have uncovered 10 new attacks along with 9 prior attacks, categorized into three abstract classes (i.e., security, user privacy, and disruption of service), in the three procedures of 4G LTE. Notable among our findings is the authentication relay attack that enables an adversary to spoof the location of a legitimate user to the core network without possessing appropriate credentials. To ensure that the exposed attacks pose real threats and are indeed realizable in practice, we have validated 8 of the 10 new attacks and their accompanying adversarial assumptions through experimentation in a real testbed.
  5. Reliably identifying and authenticating smartphones is critical in our daily life since they are increasingly being used to manage sensitive data such as private messages and financial data. Recent researches on hardware fingerprinting show that each smartphone, regardless of the manufacturer or make, possesses a variety of hardware fingerprints that are unique, robust, and physically unclonable. There is a growing interest in designing and implementing hardware-rooted smartphone authentication which authenticates smartphones through verifying the hardware fingerprints of their built-in sensors. Unfortunately, previous fingerprinting methods either involve large registration overhead or suffer from fingerprint forgery attacks, rendering them infeasible in authentication systems. In this paper, we propose ABC, a real-time smartphone Authentication protocol utilizing the photo-response non-uniformity (PRNU) of the Built-in Camera. In contrast to previous works that require tens of images to build reliable PRNU features for conventional cameras, we are the first to observe that one image alone can uniquely identify a smartphone due to the unique PRNU of a smartphone image sensor. This new discovery makes the use of PRNU practical for smartphone authentication. While most existing hardware fingerprints are vulnerable against forgery attacks, ABC defeats forgery attacks by verifying a smartphone’s PRNU identity through a challenge responsemore »protocol using a visible light communication channel. A user captures two time-variant QR codes and sends the two images to a server, which verifies the identity by fingerprint and image content matching. The time-variant QR codes can also defeat replay attacks. Our experiments with 16,000 images over 40 smartphones show that ABC can efficiently authenticate user devices with an error rate less than 0.5%.« less