skip to main content


Title: Rethinking Data Management Systems for Disaggregated Data Centers
One recent trend of cloud data center design is resource disaggregation. Instead of having server units with “converged” compute, memory, and storage resources, a disaggregated data center (DDC) has pools of resources of each type connected via a network. While the systems community has been investigating the research challenges of DDC by designing new OS and network stacks, the implications of DDC for next-generation database systems remain unclear. In this paper, we take a first step towards understanding how DDCs might affect the design of relational databases, discuss the potential advantages and drawbacks in the context of data processing, and outline research challenges in addressing them.  more » « less
Award ID(s):
1845749
NSF-PAR ID:
10157860
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Conference on Innovative Data Systems Research
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Obeid, I. (Ed.)
    The Neural Engineering Data Consortium (NEDC) is developing the Temple University Digital Pathology Corpus (TUDP), an open source database of high-resolution images from scanned pathology samples [1], as part of its National Science Foundation-funded Major Research Instrumentation grant titled “MRI: High Performance Digital Pathology Using Big Data and Machine Learning” [2]. The long-term goal of this project is to release one million images. We have currently scanned over 100,000 images and are in the process of annotating breast tissue data for our first official corpus release, v1.0.0. This release contains 3,505 annotated images of breast tissue including 74 patients with cancerous diagnoses (out of a total of 296 patients). In this poster, we will present an analysis of this corpus and discuss the challenges we have faced in efficiently producing high quality annotations of breast tissue. It is well known that state of the art algorithms in machine learning require vast amounts of data. Fields such as speech recognition [3], image recognition [4] and text processing [5] are able to deliver impressive performance with complex deep learning models because they have developed large corpora to support training of extremely high-dimensional models (e.g., billions of parameters). Other fields that do not have access to such data resources must rely on techniques in which existing models can be adapted to new datasets [6]. A preliminary version of this breast corpus release was tested in a pilot study using a baseline machine learning system, ResNet18 [7], that leverages several open-source Python tools. The pilot corpus was divided into three sets: train, development, and evaluation. Portions of these slides were manually annotated [1] using the nine labels in Table 1 [8] to identify five to ten examples of pathological features on each slide. Not every pathological feature is annotated, meaning excluded areas can include focuses particular to these labels that are not used for training. A summary of the number of patches within each label is given in Table 2. To maintain a balanced training set, 1,000 patches of each label were used to train the machine learning model. Throughout all sets, only annotated patches were involved in model development. The performance of this model in identifying all the patches in the evaluation set can be seen in the confusion matrix of classification accuracy in Table 3. The highest performing labels were background, 97% correct identification, and artifact, 76% correct identification. A correlation exists between labels with more than 6,000 development patches and accurate performance on the evaluation set. Additionally, these results indicated a need to further refine the annotation of invasive ductal carcinoma (“indc”), inflammation (“infl”), nonneoplastic features (“nneo”), normal (“norm”) and suspicious (“susp”). This pilot experiment motivated changes to the corpus that will be discussed in detail in this poster presentation. To increase the accuracy of the machine learning model, we modified how we addressed underperforming labels. One common source of error arose with how non-background labels were converted into patches. Large areas of background within other labels were isolated within a patch resulting in connective tissue misrepresenting a non-background label. In response, the annotation overlay margins were revised to exclude benign connective tissue in non-background labels. Corresponding patient reports and supporting immunohistochemical stains further guided annotation reviews. The microscopic diagnoses given by the primary pathologist in these reports detail the pathological findings within each tissue site, but not within each specific slide. The microscopic diagnoses informed revisions specifically targeting annotated regions classified as cancerous, ensuring that the labels “indc” and “dcis” were used only in situations where a micropathologist diagnosed it as such. Further differentiation of cancerous and precancerous labels, as well as the location of their focus on a slide, could be accomplished with supplemental immunohistochemically (IHC) stained slides. When distinguishing whether a focus is a nonneoplastic feature versus a cancerous growth, pathologists employ antigen targeting stains to the tissue in question to confirm the diagnosis. For example, a nonneoplastic feature of usual ductal hyperplasia will display diffuse staining for cytokeratin 5 (CK5) and no diffuse staining for estrogen receptor (ER), while a cancerous growth of ductal carcinoma in situ will have negative or focally positive staining for CK5 and diffuse staining for ER [9]. Many tissue samples contain cancerous and non-cancerous features with morphological overlaps that cause variability between annotators. The informative fields IHC slides provide could play an integral role in machine model pathology diagnostics. Following the revisions made on all the annotations, a second experiment was run using ResNet18. Compared to the pilot study, an increase of model prediction accuracy was seen for the labels indc, infl, nneo, norm, and null. This increase is correlated with an increase in annotated area and annotation accuracy. Model performance in identifying the suspicious label decreased by 25% due to the decrease of 57% in the total annotated area described by this label. A summary of the model performance is given in Table 4, which shows the new prediction accuracy and the absolute change in error rate compared to Table 3. The breast tissue subset we are developing includes 3,505 annotated breast pathology slides from 296 patients. The average size of a scanned SVS file is 363 MB. The annotations are stored in an XML format. A CSV version of the annotation file is also available which provides a flat, or simple, annotation that is easy for machine learning researchers to access and interface to their systems. Each patient is identified by an anonymized medical reference number. Within each patient’s directory, one or more sessions are identified, also anonymized to the first of the month in which the sample was taken. These sessions are broken into groupings of tissue taken on that date (in this case, breast tissue). A deidentified patient report stored as a flat text file is also available. Within these slides there are a total of 16,971 total annotated regions with an average of 4.84 annotations per slide. Among those annotations, 8,035 are non-cancerous (normal, background, null, and artifact,) 6,222 are carcinogenic signs (inflammation, nonneoplastic and suspicious,) and 2,714 are cancerous labels (ductal carcinoma in situ and invasive ductal carcinoma in situ.) The individual patients are split up into three sets: train, development, and evaluation. Of the 74 cancerous patients, 20 were allotted for both the development and evaluation sets, while the remain 34 were allotted for train. The remaining 222 patients were split up to preserve the overall distribution of labels within the corpus. This was done in hope of creating control sets for comparable studies. Overall, the development and evaluation sets each have 80 patients, while the training set has 136 patients. In a related component of this project, slides from the Fox Chase Cancer Center (FCCC) Biosample Repository (https://www.foxchase.org/research/facilities/genetic-research-facilities/biosample-repository -facility) are being digitized in addition to slides provided by Temple University Hospital. This data includes 18 different types of tissue including approximately 38.5% urinary tissue and 16.5% gynecological tissue. These slides and the metadata provided with them are already anonymized and include diagnoses in a spreadsheet with sample and patient ID. We plan to release over 13,000 unannotated slides from the FCCC Corpus simultaneously with v1.0.0 of TUDP. Details of this release will also be discussed in this poster. Few digitally annotated databases of pathology samples like TUDP exist due to the extensive data collection and processing required. The breast corpus subset should be released by November 2021. By December 2021 we should also release the unannotated FCCC data. We are currently annotating urinary tract data as well. We expect to release about 5,600 processed TUH slides in this subset. We have an additional 53,000 unprocessed TUH slides digitized. Corpora of this size will stimulate the development of a new generation of deep learning technology. In clinical settings where resources are limited, an assistive diagnoses model could support pathologists’ workload and even help prioritize suspected cancerous cases. ACKNOWLEDGMENTS This material is supported by the National Science Foundation under grants nos. CNS-1726188 and 1925494. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation. REFERENCES [1] N. Shawki et al., “The Temple University Digital Pathology Corpus,” in Signal Processing in Medicine and Biology: Emerging Trends in Research and Applications, 1st ed., I. Obeid, I. Selesnick, and J. Picone, Eds. New York City, New York, USA: Springer, 2020, pp. 67 104. https://www.springer.com/gp/book/9783030368432. [2] J. Picone, T. Farkas, I. Obeid, and Y. Persidsky, “MRI: High Performance Digital Pathology Using Big Data and Machine Learning.” Major Research Instrumentation (MRI), Division of Computer and Network Systems, Award No. 1726188, January 1, 2018 – December 31, 2021. https://www. isip.piconepress.com/projects/nsf_dpath/. [3] A. Gulati et al., “Conformer: Convolution-augmented Transformer for Speech Recognition,” in Proceedings of the Annual Conference of the International Speech Communication Association (INTERSPEECH), 2020, pp. 5036-5040. https://doi.org/10.21437/interspeech.2020-3015. [4] C.-J. Wu et al., “Machine Learning at Facebook: Understanding Inference at the Edge,” in Proceedings of the IEEE International Symposium on High Performance Computer Architecture (HPCA), 2019, pp. 331–344. https://ieeexplore.ieee.org/document/8675201. [5] I. Caswell and B. Liang, “Recent Advances in Google Translate,” Google AI Blog: The latest from Google Research, 2020. [Online]. Available: https://ai.googleblog.com/2020/06/recent-advances-in-google-translate.html. [Accessed: 01-Aug-2021]. [6] V. Khalkhali, N. Shawki, V. Shah, M. Golmohammadi, I. Obeid, and J. Picone, “Low Latency Real-Time Seizure Detection Using Transfer Deep Learning,” in Proceedings of the IEEE Signal Processing in Medicine and Biology Symposium (SPMB), 2021, pp. 1 7. https://www.isip. piconepress.com/publications/conference_proceedings/2021/ieee_spmb/eeg_transfer_learning/. [7] J. Picone, T. Farkas, I. Obeid, and Y. Persidsky, “MRI: High Performance Digital Pathology Using Big Data and Machine Learning,” Philadelphia, Pennsylvania, USA, 2020. https://www.isip.piconepress.com/publications/reports/2020/nsf/mri_dpath/. [8] I. Hunt, S. Husain, J. Simons, I. Obeid, and J. Picone, “Recent Advances in the Temple University Digital Pathology Corpus,” in Proceedings of the IEEE Signal Processing in Medicine and Biology Symposium (SPMB), 2019, pp. 1–4. https://ieeexplore.ieee.org/document/9037859. [9] A. P. Martinez, C. Cohen, K. Z. Hanley, and X. (Bill) Li, “Estrogen Receptor and Cytokeratin 5 Are Reliable Markers to Separate Usual Ductal Hyperplasia From Atypical Ductal Hyperplasia and Low-Grade Ductal Carcinoma In Situ,” Arch. Pathol. Lab. Med., vol. 140, no. 7, pp. 686–689, Apr. 2016. https://doi.org/10.5858/arpa.2015-0238-OA. 
    more » « less
  2. Resource disaggregation (RD) is an emerging paradigm for data center computing whereby resource-optimized servers are employed to minimize resource fragmentation and improve resource utilization. Apache Spark deployed under the RD paradigm employs a cluster of compute-optimized servers to run executors and a cluster of storage-optimized servers to host the data on HDFS. However, the network transfer from storage to compute cluster becomes a severe bottleneck for big data processing. Near-data processing (NDP) is a concept that aims to alleviate network load in such cases by offloading (or “pushing down”) some of the compute tasks to the storage cluster. Employing NDP for Spark under the RD paradigm is challenging because storage-optimized servers have limited computational resources and cannot host the entire Spark processing stack. Further, even if such a lightweight stack could be developed and deployed on the storage cluster, it is not entirely obvious which Spark queries would benefit from pushdown, and which tasks of a given query should be pushed down to storage. This paper presents the design and implementation of a near-data processing system for Spark, SparkNDP, that aims to address the aforementioned challenges. SparkNDP works by implementing novel NDP Spark capabilities on the storage cluster using a lightweight library of SQL operators and then developing an analytical model to help determine which Spark tasks should be pushed down to storage based on the current network and system state. Simulation and prototype implementation results show that SparkNDP can help reduce Spark query execution times when compared to both the default approach of not pushing down any tasks to storage and the outright NDP approach of pushing all tasks to storage. 
    more » « less
  3. As the field of Artificial Life advances and grows, we find ourselves in the midst of an increasingly complex ecosystem of software systems. Each system is developed to address particular research objectives, all unified under the common goal of understanding life. Such an ambitious endeavor begets a variety of algorithmic challenges. Many projects have solved some of these problems for individual systems, but these solutions are rarely portable and often must be re-engineered across systems. Here, we propose a community-driven process of developing standards for representing commonly used types of data across our field. These standards will improve software re-use across research groups and allow for easier comparisons of results generated with different artificial life systems. We began the process of developing data standards with two discussion-driven workshops (one at the 2018 Conference for Artificial Life and the other at the 2018 Congress for the BEACON Center for the Study of Evolution in Action). At each of these workshops, we discussed the vision for Artificial Life data standards, proposed and refined a standard for phylogeny (ancestry tree) data, and solicited feedback from attendees. In addition to proposing a general vision and framework for Artificial Life data standards, we release and discuss version 1.0.0 of the standards. This release includes the phylogeny data standard developed at these workshops and several software resources under development to support our proposed phylogeny standards framework. 
    more » « less
  4. There has been dramatic growth in the number of makerspaces at educational institutions. More research is needed to understand student interactions in these spaces and how these spaces should be designed to support student learning. This project uses network analysis techniques to study the network of activities in a makerspace that lead to successful student experiences. The proposed analyses will model a makerspace as a network of interactions between equipment, staff, and students. Results from this study will help educators to 1) identify and remove previously unknown hurdles for students who rarely use the space, 2) design an effective space using limited resources, 3) understand the impact of new equipment or staff, and 4) create learning opportunities such as workshops and curriculum integration that increase student learning. The new knowledge produced by this project may be useful for maximizing equipment and support infrastructure, and for guiding new equipment purchases. Thus, the results will support further development of effective makerspaces. This project hypothesizes that network-level analyses and metrics can provide valuable insights into student learning in makerspaces and will support what-if scenarios for proposed changes in spaces. Systems modeling and analysis have been used successfully to understand complex human and biological networks. In the context of makerspaces, this technique will provide measures of interaction between system components such as students, staff, and equipment. The analyses will identify the system components that are frequently used when students work in the makerspace over multiple visits. The project will allow for the comparison of makerspaces that have different levels of integration with the curriculum and methods of student introduction (pop-up classes, tours, extra-curricular competitions, advertising, and bring a friend). Demonstration of the effectiveness of the analyses in characterizing makerspaces and the ease of data collection will help support the use of this approach in future work that compares makerspaces nationwide. Current results explore the order in which students choose to learn and use the tools in the space, which tools/features are used most frequently and how the data from the daily entry/exit surveys compares to the end-of-semester self-reports. A key question in this research, especially for making it adoptable by other universities, is if end-of-semester, self-reported data is accurate enough to create informative, actionable guidance from the network models without requiring the daily tool usage data. 
    more » « less
  5. null (Ed.)
    Local business leaders, policy makers, elected officials, city planners, emergency managers, and private citizens are responsible for, and deeply affected by, the performance of critical supply chains and related infrastructures. At the center of critical supply chains is the food-energy-water nexus (FEW); a nexus that is key to a community’s wellbeing, resilience, and sustainability. In the 21st century, managing a local FEW nexus requires accurate data describing the function and structure of a community’s supply chains. However, data is not enough; we need data-informed conversation and technical and social capacity building among local stakeholders to utilize the data effectively. There are some resources available at the mesoscale and for food, energy, or water, but many communities lack the data and tools needed to understand connections and bridge the gaps between these scales and systems. As a result, we currently lack the capacity to manage these systems in small and medium sized communities where the vast majority of people, decisions, and problems reside. This study develops and validates a participatory citizen science process for FEW nexus capacity building and data-driven problem solving in small communities at the grassroots level. The FEWSION for Community Resilience (F4R) process applies a Public Participation in Scientific Research (PPSR) framework to map supply chain data for a community’s FEW nexus, to identify the social network that manages the nexus, and then to generate a data-informed conversation among stakeholders. F4R was piloted and co-developed with participants over a 2-year study, using a design-based research process to make evidence-based adjustments as needed. Results show that the F4R model was successful at improving volunteers’ awareness about nexus and supply chain issues, at creating a network of connections and communication with stakeholders across state, regional, and local organizations, and in facilitating data-informed discussion about improvements to the system. In this paper we describe the design and implementation of F4R and discuss four recommendations for the successful application of the F4R model in other communities: 1) embed opportunities for co-created PPSR, 2) build social capital, 3) integrate active learning strategies with user-friendly digital tools, and 4) adopt existing materials and structure. 
    more » « less