skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, February 13 until 2:00 AM ET on Friday, February 14 due to maintenance. We apologize for the inconvenience.


Title: Regioselective [2 + 2] cycloaddition reaction within a pair of polymorphic co-crystals based upon halogen bonding interactions
The realization of a pair of photoreactive polymorphic co-crystals that are held together by the combination of I⋯N halogen bonding interactions and C–H⋯Cl contacts is reported. The reactant molecule within these co-crystals is based upon an unsymmetrical olefin, namely 4-stilbazole, that results in a regioselective solid-state [2 + 2] cycloaddition reaction in both polymorphic forms. Each solid undergoes a quantitative photoreaction which yields exclusively the head-to-tail photoproduct.  more » « less
Award ID(s):
1827756
PAR ID:
10157973
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
CrystEngComm
Volume:
21
Issue:
43
ISSN:
1466-8033
Page Range / eLocation ID:
6671 to 6675
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Recent advancements in material science exploit non-covalent interactions, such as halogen bonding (XB) or π-stacking within solid-state molecular frameworks for application in organic electronic devices. Herein, we focus on these and other non-covalent interactions and the effect that furan and thiophene substituents play on the solid-state properties of co-crystals formed between pentafluoro(iodoethynyl)benzene ( F 5 BAI ; XB donor) and a pyridine disubstituted with either furans or thiophenes ( PyrFur 2 and PyrThio 2 ; XB acceptors). Spectroscopic and thermal analyses of 1 : 1 mixtures provide indirect evidence of XB interactions, whereas X-ray crystallography provides direct evidence that XB and π-stacking are present in both co-crystals. Density functional theory (DFT) computations provide insight into the relative electronic energetics of each pair-wise contact observed in the experimental F 5 BAI-PyrFur 2 and F 5 BAI-PyrThio 2 co-crystals. 
    more » « less
  2. TCNQ (7,7,8,8-tetracyanoquinodimethane) anion-radical derivatives were used to fine tune the magnetic properties of the [Co II (Fctp) 2 ] 2+ (Fctp = 4′-(2-ferrocenyl)-2,2′:6′2′′-terpyridine) cation in the solid state. The cocrystallization of [Co II (Fctp) 2 ] 2+ with TCNQ˙ − yielded the two pseudo-polymorphic products [Co II (Fctp) 2 ] (TCNQ) 2 ( 1 ) and [Co II (Fctp) 2 ] (TCNQ) 2 ·MeCN ( 2 ) whereas the analogous reaction with TCNQF˙ − (TCNQF = 2-fluoro-7,7,8,8-tetracyanoquinodimethane) exclusively yielded [Co II (Fctp) 2 ] (TCNQF) 2 ·MeCN ( 3 ). Compound 1 exhibits slow relaxation of magnetization under an applied DC field with U eff = 19.1 K and τ 0 = 9.8 × 10 −6 s. Compounds 2 and 3 are isostructural but exhibit different spin-crossover behavior with transition temperatures of T 1/2 = 336 K and 226 K, respectively. Investigations of the solid state structures by DFT calculations indicate that the differences in magnetic properties of the cationic moiety, [Co II (Fctp) 2 ] 2+ , are induced by supramolecular interactions between [Co II (Fctp) 2 ] 2+ and tunable TCNQ˙ − /TCNQF˙ − anion-radical derivatives. 
    more » « less
  3. The formation of a halogen-bonded co-crystal based upon 1,2-bis(2-pyridyl)ethylene along with iodoperchlorobenzene is reported. The co-crystal undergoes a nearly quantitative [2 + 2] cycloaddition reaction in the organic solid state.

     
    more » « less
  4. Abstract

    The layered semiconductor In2Se3has a low temperature crystalline–crystalline (α → β) phase transformation with distinct electrical properties that make it a promising candidate for phase change memory. Here, using scanning tunneling microscopy, correlative in situ micro‐Raman, and electrical measurements, it is shown that the β phase can persist in bulk crystals at room temperature in non‐oxidative environments. Of particular note, the stability of β phase crystals in ambient conditions under encapsulation of graphene and similar passivation layers, is reported for the first time. The strategy of encapsulation to ensure the persistence of β phase overlaps with efforts to passivate switching materials. It is further demonstrated that degradation from the elevated temperatures required for the phase change is slowed through examination of Raman signatures. These results demonstrate an alternative method of phase manipulation with a new stabilization of β‐In2Se3in ambient conditions potentially extendable to other polymorphic materials, and the importance of passivation in In2Se3memory devices.

     
    more » « less
  5. High-temperature solid/molten-carbonate composite represent an emerging class of CO2transport membranes to capture CO2from flue gas with advantages in flux density and selectivity over conventional solvent/sorbent- and polymer-based counterparts. While significant technical progress in these membranes has been made in the past years, a deeper fundamental understanding of CO2transport mechanisms is still limited. Aimed to bridge this gap, we here report a theoretical study on flux performances of four types of solid/molten-carbonate CO2transport membranes by analytical and numerical modeling. We found that analytical and numerical results are virtually identical for solids with single charge carrier. However, for mixed conducting solids, numerical methods are preferred since analytical methods cannot solve the nonlinear local concentrations of charge carriers. Application of numerical method to a new three-phase membrane containing a mixed conducting solid, a pure electron conducting solid and molten-carbonate reveals a ∼90% increase in CO2flux compared to the two-phase (mixed conducting solid and molten-carbonate) counterpart. The models presented here are expected to provide better fundamental insights and guidance for designing next-generation high-performance CO2transport membranes.

     
    more » « less