skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Predictions for the Higgs boson mass measurement precision as a function of its transverse momentum up to 1 TeV for LHC and high luminosity LHC
The question of naturalness of the Standard Model (SM) has been a hot topic since the discovery that the Higgs boson has a relatively light mass. It has been pointed out in the past that the mass of a scalar boson can be destabilized by loop corrections. Many theories have been proposed beyond the SM to address this problem. It is possible that such mechanisms contribute to the running of the Higgs mass with the energy scale. We present predictions for the precision of the Higgs mass measurement up to a Higgs boson transverse momentum of 1 TeV for the LHC in Run 3 with a luminosity of 300 fb-1, and the high luminosity LHC with a luminosity of 3000 fb-1. Predictions are generated with MadGraph5, Pythia8 and Delphes based on the CMS detector resolution.  more » « less
Award ID(s):
1913886
PAR ID:
10158098
Author(s) / Creator(s):
Date Published:
Journal Name:
Proceedings of the 2019 meeting of the Division of Particles and Fields of the American Physical Society
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper presents a search for exotic decays of the Higgs boson into a pair of new pseudoscalar particles, H → aa, where one pseudoscalar decays into a b-quark pair and the other decays into a τ-lepton pair, in the mass range 12 ≤ ma ≤ 60 GeV. The analysis uses pp collision data at \sqrt{s} = 13 TeV collected with the ATLAS detector at the LHC, corresponding to an integrated luminosity of 140 fb−1. No significant excess above the Standard Model (SM) prediction is observed. Assuming the SM Higgs boson production cross section, the search sets upper limits at 95% confidence level on the branching ratio of Higgs bosons decaying into BR (H → aa → bb\tau\tau), between 2.2% and 3.9% depending on the pseudoscalar mass. 
    more » « less
  2. null (Ed.)
    Abstract Production cross sections of the Higgs boson are measured in the $${\mathrm{H}} \rightarrow {\mathrm{Z}} {\mathrm{Z}} \rightarrow 4\ell $$ H → Z Z → 4 ℓ ( $$\ell ={\mathrm{e}},{{{\upmu }}_{\mathrm{}}^{\mathrm{}}} $$ ℓ = e , μ ) decay channel. A data sample of proton–proton collisions at a center-of-mass energy of 13 $$\,\text {Te}\text {V}$$ Te , collected by the CMS detector at the LHC and corresponding to an integrated luminosity of 137 $$\,\text {fb}^{-1}$$ fb - 1 is used. The signal strength modifier $$\mu $$ μ , defined as the ratio of the Higgs boson production rate in the $$4\ell $$ 4 ℓ channel to the standard model (SM) expectation, is measured to be $$\mu =0.94 \pm 0.07 \,\text {(stat)} ^{+0.09}_{-0.08} \,\text {(syst)} $$ μ = 0.94 ± 0.07 (stat) - 0.08 + 0.09 (syst) at a fixed value of $$m_{{\mathrm{H}}} = 125.38\,\text {Ge}\text {V} $$ m H = 125.38 Ge . The signal strength modifiers for the individual Higgs boson production modes are also reported. The inclusive fiducial cross section for the $${\mathrm{H}} \rightarrow 4\ell $$ H → 4 ℓ process is measured to be $$2.84^{+0.23}_{-0.22} \,\text {(stat)} ^{+0.26}_{-0.21} \,\text {(syst)} \,\text {fb} $$ 2 . 84 - 0.22 + 0.23 (stat) - 0.21 + 0.26 (syst) fb , which is compatible with the SM prediction of $$2.84 \pm 0.15 \,\text {fb} $$ 2.84 ± 0.15 fb for the same fiducial region. Differential cross sections as a function of the transverse momentum and rapidity of the Higgs boson, the number of associated jets, and the transverse momentum of the leading associated jet are measured. A new set of cross section measurements in mutually exclusive categories targeted to identify production mechanisms and kinematical features of the events is presented. The results are in agreement with the SM predictions. 
    more » « less
  3. A bstract A search for physics beyond the standard model (SM) in final states with an electron or muon and missing transverse momentum is presented. The analysis uses data from proton-proton collisions at a centre-of-mass energy of 13 TeV, collected with the CMS detector at the LHC in 2016–2018 and corresponding to an integrated luminosity of 138 fb − 1 . No significant deviation from the SM prediction is observed. Model-independent limits are set on the production cross section of W’ bosons decaying into lepton-plus-neutrino final states. Within the framework of the sequential standard model, with the combined results from the electron and muon decay channels a W’ boson with mass less than 5.7 TeV is excluded at 95% confidence level. Results on a SM precision test, the determination of the oblique electroweak W parameter, are presented using LHC data for the first time. These results together with those from the direct W’ resonance search are used to extend existing constraints on composite Higgs scenarios. This is the first experimental exclusion on compositeness parameters using results from LHC data other than Higgs boson measurements. 
    more » « less
  4. null (Ed.)
    Abstract Inclusive and differential fiducial cross sections of the Higgs boson are measured in the $$H \rightarrow ZZ^{*} \rightarrow 4\ell $$ H → Z Z ∗ → 4 ℓ ( $$\ell = e,\mu $$ ℓ = e , μ ) decay channel. The results are based on proton-proton collision data produced at the Large Hadron Collider at a centre-of-mass energy of 13 TeV and recorded by the ATLAS detector from 2015 to 2018, equivalent to an integrated luminosity of 139  $$\hbox {fb}^{-1}$$ fb - 1 . The inclusive fiducial cross section for the $$H \rightarrow ZZ^{*} \rightarrow 4\ell $$ H → Z Z ∗ → 4 ℓ process is measured to be $$\sigma _\mathrm {fid} = 3.28 \,{\pm }\, 0.32$$ σ fid = 3.28 ± 0.32  fb, in agreement with the Standard Model prediction of $$\sigma _\mathrm {fid, SM} = 3.41 \pm 0.18 $$ σ fid , SM = 3.41 ± 0.18  fb. Differential fiducial cross sections are measured for a variety of observables which are sensitive to the production and decay of the Higgs boson. All measurements are in agreement with the Standard Model predictions. The results are used to constrain anomalous Higgs boson interactions with Standard Model particles. 
    more » « less
  5. A<sc>bstract</sc> A search for Higgs boson pair (HH) production with one Higgs boson decaying to two bottom quarks and the other to two W bosons are presented. The search is done using proton-proton collisions data at a centre-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 138 fb−1recorded by the CMS detector at the LHC from 2016 to 2018. The final states considered include at least one leptonically decaying W boson. No evidence for the presence of a signal is observed and corresponding upper limits on the HH production cross section are derived. The limit on the inclusive cross section of the nonresonant HH production, assuming that the distributions of kinematic observables are as expected in the standard model (SM), is observed (expected) to be 14 (18) times the value predicted by the SM, at 95% confidence level. The limits on the cross section are also presented as functions of various Higgs boson coupling modifiers, and anomalous Higgs boson coupling scenarios. In addition, limits are set on the resonant HH production via spin-0 and spin-2 resonances within the mass range 250–900 GeV. 
    more » « less