skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


Title: PUFchain: Hardware-Assisted Scalable Blockchain
his is an extended abstract for the research demo of a novel hardware-assisted scalable blockchain called PUFChain. This work presents a scalable energy-efficient private/permissioned blockchain (integrated with Physical Unclonable Functions or PUFs) which can bedeployed in the IoT. PUFs have a multiple of roles in the blockchain: higher security, lower latency, and reduced energy consumption. Experimental validations of PUFChain show a transaction time of 198ms.To the best of authors knowledge this is the first ever work that presents a comprehensive framework integrating PUFs in a blockchain.  more » « less
Award ID(s):
1924112
PAR ID:
10158099
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proceedings of the 5th IEEE International Symposium on Smart Electronic Systems (iSES)
Page Range / eLocation ID:
324 to 325
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The current centralized model of the electricity market is not efficient in performing distributed energy transactions required for the transactive smart grid. One of the prominent solutions to this issue is to integrate blockchain technologies, which promise transparent, tamper-proof, and secure transaction systems specifically suitable for the decentralized and distributed energy markets. Blockchain has already been shown to successfully operate in a microgrid peer-to-peer (P2P) energy market. The prime determinant of different blockchain implementations is the consensus algorithm they use to reach consensus on which blocks/transactions to accept as valid in a distributed environment. Although different blockchain implementations have been proposed independently for P2P energy market in the microgrid, quantitative experimental analyses and comparison of the consensus algorithms that the different blockchains may use for energy markets, has not been studied. Identifying the right consensus algorithm to use is essential for scalability and operation of the energy market. To this end, we evaluate three popular consensus algorithms: (i) proof of work (PoW), (ii) proof of authority (PoA), and (iii) Istanbul Byzantine fault tolerance (IBFT), running them on a network of nodes set up using a network of docker nodes to form a microgrid energy market. Using a series of double auctions, we assess each algorithm's viability using different metrics, such as time to reach consensus and scalability. The results indicate that PoA is the most efficient and scalable consensus algorithm to hold double auctions in the smart grid. We also identified the minimum hardware specification necessary for devices such as smart meters, which may run these consensus algorithms 
    more » « less
  2. The current centralized model of the electricity market is not efficient in performing distributed energy transactions required for the transactive smart grid. One of the prominent solutions to this issue is to integrate blockchain technologies, which promise transparent, tamper-proof, and secure transaction systems specifically suitable for the decentralized and distributed energy markets. Blockchain has already been shown to successfully operate in a microgrid peer-to-peer (P2P) energy market. The prime determinant of different blockchain implementations is the consensus algorithm they use to reach consensus on which blocks/transactions to accept as valid in a distributed environment. Although different blockchain implementations have been proposed independently for P2P energy market in the microgrid, quantitative experimental analyses and comparison of the consensus algorithms that the different blockchains may use for energy markets, has not been studied. Identifying the right consensus algorithm to use is essential for scalability and operation of the energy market. To this end, we evaluate three popular consensus algorithms: (i) proof of work (PoW), (ii) proof of authority (PoA), and (iii) Istanbul Byzantine fault tolerance (IBFT), running them on a network of nodes set up using a network of docker nodes to form a microgrid energy market. Using a series of double auctions, we assess each algorithm’s viability using different metrics, such as time to reach consensus and scalability. The results indicate that PoA is the most efficient and scalable consensus algorithm to hold double auctions in the smart grid. We also identified the minimum hardware specification necessary for devices such as smart meters, which may run these consensus algorithms. 
    more » « less
  3. Blockchain technology enables the creation of a distributed and tamper-proof ledger, even in the presence of untrusted agents. While much financial resources and attention are devoted to blockchain tools, the underlying technology is not well understood by the general population. This paper presents a newly developed online tool that allows users to learn and create their own blockchain, with a graphical user interface and code. The module is freely available on nanoHUB.org and describes all components of the blockchain, including the SHA256, Proof of Work, and other features that enable the blockchain to function as a tamper-proof ledger. This tool has been utilized to instruct students without prior knowledge of blockchain technology, and the survey of students’ responses demonstrates that this tool is an effective way of teaching the general population about blockchain technology. 
    more » « less
  4. In this on-going research, we propose a blockchain-based solution that facilitates a scalable and secured inter-healthcare EHRs exchange. These healthcare systems maintain their records on separate blockchain networks and are independent of each other. The proposed architecture can detect and prevent malicious activities on both stored and shared EHRs from either outsider or insider threats. It can also verify the integrity and consistency of EHR requests and replies from other healthcare systems and presents them in a standard format that can be easily understood by different healthcare nodes. In the preliminary result, we evaluate the security analysis against frequently encounter outsider and insider threats within a healthcare system. The result shows that the architecture detects and prevents outsider threats from uploading compromising EHRs into the blockchain and also prevents unauthorized retrieval of patient's information 
    more » « less
  5. Today's large-scale data management systems need to address distributed applications' confidentiality and scalability requirements among a set of collaborative enterprises. This paper presents Qanaat , a scalable multi-enterprise permissioned blockchain system that guarantees the confidentiality of enterprises in collaboration workflows. Qanaat presents data collections that enable any subset of enterprises involved in a collaboration workflow to keep their collaboration private from other enterprises. A transaction ordering scheme is also presented to enforce only the necessary and sufficient constraints on transaction order to guarantee data consistency. Furthermore, Qanaat supports data consistency across collaboration workflows where an enterprise can participate in different collaboration workflows with different sets of enterprises. Finally, Qanaat presents a suite of consensus protocols to support intra-shard and cross-shard transactions within or across enterprises. 
    more » « less