skip to main content


Title: The effects of disc self-gravity and radiative cooling on the formation of gaps and spirals by young planets
ABSTRACT We have carried out 2D hydrodynamical simulations to study the effects of disc self-gravity and radiative cooling on the formation of gaps and spirals. (1) With disc self-gravity included, we find stronger, more tightly wound spirals and deeper gaps in more massive discs. The deeper gaps are due to the larger Angular Momentum Flux (AMF) of the waves excited in more massive discs, as expected from the linear theory. The position of the secondary gap does not change, provided that the disc is not extremely massive (Q ≳ 2). (2) With radiative cooling included, the excited spirals become monotonically more open (less tightly wound) as the disc’s cooling time-scale increases. On the other hand, the amplitude and strength of the spirals decrease when the cooling time increases from a small value to ∼1/Ω, but then the amplitude starts to increase again when the cooling time continues to increase. This indicates that radiative dissipation becomes important for waves with Tcool ∼ 1. Consequently, the induced primary gap is narrower and the secondary gap becomes significantly shallower when the cooling time becomes ∼1/Ω. When the secondary gap is present, the position of it moves to the inner disc from the fast cooling cases to the slow cooling cases. The dependence of gap properties on the cooling time-scale (e.g. in AS 209) provides a new way to constrain the disc optical depth and thus disc surface density.  more » « less
Award ID(s):
1753168
NSF-PAR ID:
10158146
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
493
Issue:
2
ISSN:
0035-8711
Page Range / eLocation ID:
2287 to 2305
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Recent observations have revealed a gallery of substructures in the dust component of nearby protoplanetary discs, including rings, gaps, spiral arms, and lopsided concentrations. One interpretation of these substructures is the existence of embedded planets. Not until recently, however, most of the modelling effort to interpret these observations ignored the dust back reaction to the gas. In this work, we conduct local-shearing-sheet simulations for an isothermal, inviscid, non-self-gravitating, razor-thin dusty disc with a planet on a fixed circular orbit. We systematically examine the parameter space spanned by planet mass (0.1Mth ≤ Mp ≤ 1Mth, where Mth is the thermal mass), dimensionless stopping time (10−3 ≤ τs ≤ 1), and solid abundance (0 < Z ≤ 1). We find that when the dust particles are tightly coupled to the gas (τs < 0.1), the spiral arms are less open and the gap driven by the planet becomes deeper with increasing Z, consistent with a reduced speed of sound in the approximation of a single dust-gas mixture. By contrast, when the dust particles are marginally coupled (0.1 ≲ τs ≲ 1), the spiral structure is insensitive to Z and the gap structure in the gas can become significantly skewed and unidentifiable. When the latter occurs, the pressure maximum radially outside of the planet is weakened or even extinguished, and hence dust filtration by a low-mass (Mp < Mth) planet could be reduced or eliminated. Finally, we find that the gap edges where the dust particles are accumulated as well as the lopsided large-scale vortices driven by a massive planet, if any, are unstable, and they are broken into numerous small-scale dust-gas vortices. 
    more » « less
  2. null (Ed.)
    Abstract Ocean swell interacting with Antarctic ice shelves produces sustained (approximately, 2×106 cycles per year) gravity-elastic perturbations with deformation amplitudes near the ice front as large as tens to hundreds of nanostrain. This process is the most energetically excited during the austral summer, when sea ice-induced swell attenuation is at a minimum. A 2014–2017 deployment of broadband seismographs on the Ross Ice shelf, which included three stations sited, approximately, 2 km from the ice front, reveals prolific swell-associated triggering of discrete near-ice-front (magnitude≲0) seismic subevents, for which we identify three generic types. During some strong swell episodes, subevent timing becomes sufficiently phase-locked with swell excitation, to create prominent harmonic features in spectra calculated across sufficiently lengthy time windows via a Dirac comb effect, for which we articulate a theoretical development for randomized interevent times. These events are observable at near-front stations, have dominant frequency content between 0.5 and 20 Hz, and, in many cases, show highly repetitive waveforms. Matched filtering detection and analysis shows that events occur at a low-background rate during all swell states, but become particularly strongly excited during large amplitude swell at rates of up to many thousands per day. The superimposed elastic energy from swell-triggered sources illuminates the shelf interior as extensional (elastic plate) Lamb waves that are observable more than 100 km from the ice edge. Seismic swarms show threshold excitation and hysteresis with respect to rising and falling swell excitation. This behavior is consistent with repeated seismogenic fracture excitation and growth within a near-ice-front damage zone, encompassing fracture features seen in satellite imagery. A much smaller population of distinctly larger near-front seismic events, previously noted to be weakly associated with extended periods of swell perturbation, likely indicate calving or other larger-scale ice failures near the shelf front. 
    more » « less
  3. Abstract

    We develop a linear perturbative formalism to compute the response of an inhomogeneous stellar disk embedded in a nonresponsive dark matter (DM) halo to various perturbations like bars, spiral arms, and encounters with satellite galaxies. Without self-gravity to reinforce it, the response of a Fourier mode phase mixes away due to an intrinsic spread in the vertical (Ωz), radial (Ωr), and azimuthal (Ωϕ) frequencies, triggering local phase-space spirals. The detailed galactic potential dictates the shape of phase spirals: phase mixing occurs more slowly and thus phase spirals are more loosely wound in the outer disk and in the presence of an ambient DM halo. Collisional diffusion due to scattering of stars by structures like giant molecular clouds causes superexponential damping of the phase spiral amplitude. Thezvzphase spiral is one-armed (two-armed) for vertically antisymmetric (symmetric) bending (breathing) modes. Only transient perturbations with timescales (τP) comparable to the vertical oscillation period (τz∼ 1/Ωz) can trigger vertical phase spirals. Each (n,l,m) mode of the response to impulsive (τP<τ= 1/(nΩz+lΩr+mΩϕ)) perturbations is power-law (∼τP/τ) suppressed, but that to adiabatic (τP>τ) perturbations is exponentially weak (expτP/τα) except for resonant (τ→ ∞ ) modes. Slower (τP>τz) perturbations, e.g., distant encounters with satellite galaxies, induce stronger bending modes. Sagittarius (Sgr) dominates the solar neighborhood response of the Milky Way (MW) disk to satellite encounters. Thus, if the Gaia phase spiral was triggered by a MW satellite, Sgr is the leading contender. However, the survival of the phase spiral against collisional damping necessitates an impact ∼0.6–0.7 Gyr ago.

     
    more » « less
  4. ABSTRACT

    Radial substructures have now been observed in a wide range of protoplanetary discs (PPDs), from young to old systems; however, their formation is still an area of vigorous debate. Recent magnetohydrodynamic (MHD) simulations have shown that rings and gaps can form naturally in PPDs when non-ideal MHD effects are included. However, these simulations employ ad hoc approximations to the magnitudes of the magnetic diffusivities in order to facilitate ring growth. We replace the parametrization of these terms with a simple chemical network and grain distribution model to calculate the non-ideal effects in a more self-consistent way. We use a range of grain distributions to simulate grain formation for different disc conditions. Including ambipolar diffusion, we find that large grain populations (>1 $\mu$m), and those including a population of very small polyaromatic hydrocarbons (PAHs) facilitate the growth of periodic, stable rings, while intermediate-sized grains suppress ring formation. Including Ohmic diffusion removes the positive influence of PAHs, with only large grain populations still producing periodic ring and gap structures. These results relate closely to the degree of coupling between the magnetic field and the neutral disc material, quantified by the non-dimensional Elsasser number Λ (the ratio of magnetic forces to Coriolis force). For both the ambipolar-only and ambipolar-ohmic cases, if the total Elsasser number is initially of the order of unity along the disc mid-plane, ring and gap structures may develop.

     
    more » « less
  5. ABSTRACT

    Stars form from the gravitational collapse of turbulent, magnetized molecular cloud cores. Our non-ideal MHD simulations reveal that the intrinsically anisotropic magnetic resistance to gravity during the core collapse naturally generates dense gravomagneto sheetlets within inner protostellar envelopes – disrupted versions of classical sheet-like pseudo-discs. They are embedded in a magnetically dominant background, where less dense materials flow along the local magnetic field lines and accumulate in the dense sheetlets. The sheetlets, which feed the disc predominantly through its upper and lower surfaces, are the primary channels for mass and angular momentum transfer from the envelope to the disc. The protostellar disc inherits a small fraction (up to 10 per cent) of the magnetic flux from the envelope, resulting in a disc-averaged net vertical field strength of 1–10 mG and a somewhat stronger toroidal field, potentially detectable through ALMA Zeeman observations. The inherited magnetic field from the envelope plays a dominant role in disc angular momentum evolution, enabling the formation of gravitationally stable discs in cases where the disc field is relatively well-coupled to the gas. Its influence remains significant even in marginally gravitationally unstable discs formed in the more magnetically diffusive cases, removing angular momentum at a rate comparable to or greater than that caused by spiral arms. The magnetically driven disc evolution is consistent with the apparent scarcity of prominent spirals capable of driving rapid accretion in deeply embedded protostellar discs. The dense gravomagneto sheetlets observed in our simulations may correspond to the ‘accretion streamers’ increasingly detected around protostars.

     
    more » « less