skip to main content

Title: Seasonal dynamics of midwater zooplankton and relation to particle cycling in the North Pacific Subtropical Gyre
Midwater zooplankton are major agents of biogeochemical transformation in the open ocean; however their characteristics and activity remain poorly known. Here we evaluate midwater zooplankton biomass, amino acid (AA)-specific stable isotope composition (δ15N values) using compound-specific isotope analysis of amino acids (CSIA-AA), trophic position, and elemental composition in the North Pacific Subtropical Gyre (NPSG). We focus on zooplankton collected in the winter, spring, and summer to evaluate midwater trophic dynamics over a seasonal cycle. For the first time we find that midwater zooplankton respond strongly to seasonal changes in production and export in the NPSG. In summer, when export from the euphotic zone is elevated and this ‘summer pulse’ material is transported rapidly to depth, CSIA-AA indicates that large particles (> 53 μm) dominate the food web base for zooplankton throughout the midwaters, and to a large extent even into the upper bathypelagic zone. In winter, when export is low, zooplankton in the mid-mesopelagic zone continue to rely on large particle basal resources, but resident zooplankton in the lower mesopelagic and upper bathypelagic zones switch to include smaller particles (0.7–53 μm) in their food web base, or even a subset of the small particle pool. Midwater zooplankton migration patterns also vary more » with season, with migrants distributed more evenly at night through the euphotic zone in summer as compared to being more compressed in the upper mixed layer in winter. Deeper zooplankton migration within the mesopelagic zone is also reduced in late summer, likely due to the increased magnitude of large particle material available at depth during this season. Our observed seasonal change in activity and trophic dynamics drives modestly greater biomass in summer than winter through the mesopelagic zone. In contrast midwater zooplankton carbon (C), nitrogen (N), and phosphorus (P) composition does not change with season. Instead we find increasing C:N, C:P, and N:P ratios with greater depths, likely due to decreases in proteinaceous structures and organic P compounds and increases in storage lipids with depth. Our study highlights the importance and diversity of feeding strategies for small zooplankton in NPSG midwaters. Many small zooplankton, such as oncaeid and oithonid copepods, are able to access small particle resources at depth and may be an important trophic link between the microbial loop and deep dwelling micronekton species that also rely on small particle-based food webs. Our observed midwater zooplankton trophic response to export-driven variation in the particle field at depth has important implications for midwater metabolism and the export of C to the deep sea. « less
Authors:
; ; ; ; ; ; ; ; ;
Award ID(s):
1829425
Publication Date:
NSF-PAR ID:
10158277
Journal Name:
Progress in oceanography
Volume:
182
Page Range or eLocation-ID:
102266
ISSN:
0079-6611
Sponsoring Org:
National Science Foundation
More Like this
  1. The fate of organic matter (OM) in the deep ocean remains enigmatic, with little understood regarding the flux and its utilization by deep food webs. We used compound-specific nitrogen stable isotope ratios of source amino acids measured in particle size classes and deep zooplankton (700–1500 m) to determine the contribution of small (0.7–53 μm) vs. large particles (> 53 μm) to their diet at four sites in the North Pacific. Our results show that small particles constitute between 9% and 98% of zooplankton diets, being the contribution higher at sites with lower flux regimes. The contribution of small particles tomore »the diet of deep zooplankton was also higher when biomass of vertical migrators, and therefore actively transported OM, was lower. Climate-driven changes in primary production and export are expected to shift particle fluxes to smaller size classes, and thus their importance in midwater food webs may become more widespread.« less
  2. We investigated the response of an open-ocean plankton food web to a major ecosystem perturbation event, the Hawaiian lee cyclonic eddy Opal, using compound-specific isotopic analyses of amino acids (CSIA-AA) of individual zooplankton taxa. We hypothesized that the massive diatom bloom that characterized Opal would lead to a shorter food chain. Using CSIA-AA, we differentiated trophic position (TP) changes that arose from altered transfers through protistan microzooplankton, versus metazoan carnivory, and assessed the variability at the base of the food web. Contrary to expectation, zooplankton TPs were higher in the eddy than in ambient control waters (up to 0.8 trophicmore »level), particularly for suspension feeders close to the food-web base. Most of the effect was due to increased trophic transfers through protistan consumers, indicating a general shift up, not down, of grazing and remineralization in the microbial food web. Eucalanus sp., which was 15-fold more abundant inside compared to outside of the eddy, was the only taxon observed to be a true herbivore (TP = 2.0), consistent with a high phenylalanine (Phe) δ 15 N value indicating feeding on nitrate-fueled diatoms in the lower euphotic zone. Oncaea sp., an aggregate-associated copepod, had the largest (1.5) TP difference, and lowest Phe δ 15 N, suggesting that detrital particles were local hot spots of enhanced microbial activity. Rapid growth rates and trophic flexibility of protistan microzooplankton apparently allow the microbial community to reorganize to bloom perturbations, as microzooplankton remain the primary phytoplankton grazers—despite the dominance of large diatoms—and are heavily preyed on by the mesozooplankton.« less
  3. Zooplankton contribute a major component of the vertical flux of particulate organic matter to the ocean interior by packaging consumed food and waste into large, dense fecal pellets that sink quickly. Existing methods for quantifying the contribution of fecal pellets to particulate organic matter use either visual identification or lipid biomarkers, but these methods may exclude fecal material that is not morphologically distinct, or may include zooplankton carcasses in addition to fecal pellets. Based on results from seven pairs of wild-caught zooplankton and their fecal pellets, we assess the ability of compound-specific isotope analysis of amino acids (CSIA-AA) to chemicallymore »distinguish fecal pellets as an end-member material within particulate organic matter. Nitrogen CSIA-AA is an improvement on previous uses of bulk stable isotope ratios, which cannot distinguish between differences in baseline isotope ratios and fractionation due to metabolic processing. We suggest that the relative trophic position of zooplankton and their fecal pellets, as calculated using CSIA-AA, can provide a metric for estimating the dietary absorption efficiency of zooplankton. Using this metric, the zooplankton examined here had widely ranging dietary absorption efficiencies, where lower dietary absorption may equate to higher proportions of fecal packaging of undigested material. The nitrogen isotope ratios of threonine and alanine statistically distinguished the zooplankton fecal pellets from literature-derived examples of phytoplankton, zooplankton biomass, and microbially degraded organic matter. We suggest that δ15N values of threonine and alanine could be used in mixing models to quantify the contribution of fecal pellets to particulate organic matter.« less
  4. Abstract Trophic ecology of detrital-based food webs is still poorly understood. Abyssal plains depend entirely on detritus and are among the most understudied ecosystems, with deposit feeders dominating megafaunal communities. We used compound-specific stable isotope ratios of amino acids (CSIA-AA) to estimate the trophic position of three abundant species of deposit feeders collected from the abyssal plain of the Northeast Pacific (Station M; ~ 4000 m depth), and compared it to the trophic position of their gut contents and the surrounding sediments. Our results suggest that detritus forms the base of the food web and gut contents of deposit feeders have a trophicmore »position consistent with primary consumers and are largely composed of a living biomass of heterotrophic prokaryotes. Subsequently, deposit feeders are a trophic level above their gut contents making them secondary consumers of detritus on the abyssal plain. Based on δ 13 C values of essential amino acids, we found that gut contents of deposit feeders are distinct from the surrounding surface detritus and form a unique food source, which was assimilated by the deposit feeders primarily in periods of low food supply. Overall, our results show that the guts of deposit feeders constitute hotspots of organic matter on the abyssal plain that occupy one trophic level above detritus, increasing the food-chain length in this detritus-based ecosystem.« less
  5. Energy sources of corals, ultimately sunlight and plankton availability, change dramatically from shallow to mesophotic (30–150 m) reefs. Depth-generalist corals, those that occupy both of these two distinct ecosystems, are adapted to cope with such extremely diverse conditions. In this study, we investigated the trophic strategy of the depth-generalist hermatypic coral Stylophora pistillata and the ability of mesophotic colonies to adapt to shallow reefs. We compared symbiont genera composition, photosynthetic traits and the holobiont trophic position and carbon sources, calculated from amino acids compound-specific stable isotope analysis (AA-CSIA), of shallow, mesophotic and translocated corals. This species harbors different Symbiodiniaceae generamore »at the two depths: Cladocopium goreaui (dominant in mesophotic colonies) and Symbiodinium microadriaticum (dominant in shallow colonies) with a limited change after transplantation. This allowed us to determine which traits stem from hosting different symbiont species compositions across the depth gradient. Calculation of holobiont trophic position based on amino acid δ 15 N revealed that heterotrophy represents the same portion of the total energy budget in both depths, in contrast to the dogma that predation is higher in corals growing in low light conditions. Photosynthesis is the major carbon source to corals growing at both depths, but the photosynthetic rate is higher in the shallow reef corals, implicating both higher energy consumption and higher predation rate in the shallow habitat. In the corals transplanted from deep to shallow reef, we observed extensive photo-acclimation by the Symbiodiniaceae cells, including substantial cellular morphological modifications, increased cellular chlorophyll a , lower antennae to photosystems ratios and carbon signature similar to the local shallow colonies. In contrast, non-photochemical quenching remains low and does not increase to cope with the high light regime of the shallow reef. Furthermore, host acclimation is much slower in these deep-to-shallow transplanted corals as evident from the lower trophic position and tissue density compared to the shallow-water corals, even after long-term transplantation (18 months). Our results suggest that while mesophotic reefs could serve as a potential refuge for shallow corals, the transition is complex, as even after a year and a half the acclimation is only partial.« less