skip to main content

Title: Traceless native chemical ligation of lipid-modified peptide surfactants by mixed micelle formation

Biology utilizes multiple strategies, including sequestration in lipid vesicles, to raise the rate and specificity of chemical reactions through increases in effective molarity of reactants. We show that micelle-assisted reaction can facilitate native chemical ligations (NCLs) between a peptide-thioester – in which the thioester leaving group contains a lipid-like alkyl chain – and a Cys-peptide modified by a lipid-like moiety. Hydrophobic lipid modification of each peptide segment promotes the formation of mixed micelles, bringing the reacting peptides into close proximity and increasing the reaction rate. The approach enables the rapid synthesis of polypeptides using low concentrations of reactants without the need for thiol catalysts. After NCL, the lipid moiety is removed to yield an unmodified ligation product. This micelle-based methodology facilitates the generation of natural peptides, like Magainin 2, and the derivatization of the protein Ubiquitin. Formation of mixed micelles from lipid-modified reactants shows promise for accelerating chemical reactions in a traceless manner.

more » « less
Award ID(s):
1935372 1935120
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Britt, David R. (Ed.)
    Nosiheptide is a ribosomally produced and post-translationally modified thiopeptide antibiotic that displays potent antibacterial activity in vitro, especially against Grampositive pathogens. It comprises a core peptide macrocycle that contains multiple thiazole rings, dehydrated serine and threonine residues, a tri-substituted 3-hydroxypyridine ring and several other modifications. Among these additional modifications includes a 3,4-dimethyl-2-indolic acid (DMIA) moiety that bridges Glu6 and Cys8 of the core peptide to form a second smaller ring system. This side-ring system is formed by the action of NosN, a radical S-adenosylmethionine (SAM) enzyme that falls within the class C radical SAM methylase (RSMT) family. However, the true function of NosN is to transfer a methylene group from the methylmoiety of SAM to C4 of 3-methylindolic acid (MIA) attached in a thioester linkage to Cys8 of the core peptide to set up a highly electrophilic species. This species is then trapped by the side chain of Glu6, resulting in formation of a lactone and the side-ring system. The NosN reaction requires two simultaneously bound molecules of SAM. The first, SAMI, is cleaved to generate a 50-deoxyadenosyl 50-radical, which abstracts a hydrogen atom from the methyl group of the second molecule of SAM. The resulting SAM radical is believed to add to C4 of MIA, affording a radical intermediate on the MIA substrate. Herein we describe synthetic approaches that allow detection of this radical by electron paramagnetic resonance (EPR) spectroscopy. 
    more » « less
    more » « less
  3. Abstract

    We report a new design of redox‐responsive 15 nm 3‐helix micelles with tunable cargo release pathway. The self‐assembled micelles are structurally stabilized by the 3‐helix bundle forming peptide‐poly(ethylene glycol) conjugates and exhibit excellent stability without the presence of reducing agent (e.g., glutathione). Incorporating disulfide linkers at different locations of peptide‐poly(ethylene glycol) conjugates yields different redox‐degradation products that enable different degradation kinetics of the micelle and subsequently cargo release pathway. In conjunction with other attributes of the 3‐helix micelle such as small size, long circulation, and deep tumoral penetration, the present study provides an effective strategy toward controlled intercellular delivery of hydrophobic drugs and therapeutic peptides.

    more » « less
  4. Reconstituted photosynthetic proteins which are activated upon exposure to solar energy hold enormous potential for powering future solid state devices and solar cells. The functionality and integration of these proteins into such devices has been successfully enabled by lipid-like peptides. Yet, a fundamental understanding of the organization of these peptides with respect to the photosynthetic proteins and themselves remains unknown and is critical for guiding the design of such light-activated devices. This study investigates the relative organization of one such peptide sequence V 6 K 2 (V: valine and K: lysine) within assemblies. Given the expansive spatiotemporal scales associated with this study, a hybrid coarse-grained (CG) model which captures the structure, conformation and aggregation of the peptide is adopted. The CG model uses a combination of iterative Boltzmann inversion and force matching to provide insight into the relative organization of V 6 K 2 in assemblies. The CG model reproduces the structure of a V 6 K 2 peptide sequence along with its all atom (AA) solvation structure. The relative organization of multiple peptides in an assembly, as captured by CG simulations, is in agreement with corresponding results from AA simulations. Also, a backmapping procedure reintroduces the AA details of the peptides within the aggregates captured by the CG model to demonstrate the relative organization of the peptides. Furthermore, a large number of peptides self-assemble into an elongated micelle in the CG simulation, which is consistent with experimental findings. The coarse-graining procedure is tested for transferability to longer peptide sequences, and hence can be extended to other amphiphilic peptide sequences. 
    more » « less
  5. Methanobactins (MBs) are ribosomally produced and post-translationally modified peptides (RiPPs) that are used by methanotrophs for copper acquisition. The signature post-translational modification of MBs is the formation of two heterocyclic groups, either an oxazolone, pyrazinedione or imidazolone group, with an associated thioamide from an X -Cys dipeptide. The precursor peptide (MbnA) for MB formation is found in a gene cluster of MB-associated genes. The exact biosynthetic pathway of MB formation is not yet fully understood, and there are still uncharacterized proteins in some MB gene clusters, particularly those that produce pyrazinedione or imidazolone rings. One such protein is MbnF, which is proposed to be a flavin monooxygenase (FMO) based on homology. To help to elucidate its possible function, MbnF from Methylocystis sp. strain SB2 was recombinantly produced in Escherichia coli and its X-ray crystal structure was resolved to 2.6 Å resolution. Based on its structural features, MbnF appears to be a type A FMO, most of which catalyze hydroxylation reactions. Preliminary functional characterization shows that MbnF preferentially oxidizes NADPH over NADH, supporting NAD(P)H-mediated flavin reduction, which is the initial step in the reaction cycle of several type A FMO enzymes. It is also shown that MbnF binds the precursor peptide for MB, with subsequent loss of the leader peptide sequence as well as the last three C-terminal amino acids, suggesting that MbnF might be needed for this process to occur. Finally, molecular-dynamics simulations revealed a channel in MbnF that is capable of accommodating the core MbnA fragment minus the three C-terminal amino acids. 
    more » « less