skip to main content


Title: Mitochondrial DNA Repair in an Arabidopsis thaliana Uracil N-Glycosylase Mutant
Substitution rates in plant mitochondrial genes are extremely low, indicating strong selective pressure as well as efficient repair. Plant mitochondria possess base excision repair pathways; however, many repair pathways such as nucleotide excision repair and mismatch repair appear to be absent. In the absence of these pathways, many DNA lesions must be repaired by a different mechanism. To test the hypothesis that double-strand break repair (DSBR) is that mechanism, we maintained independent self-crossing lineages of plants deficient in uracil-N-glycosylase (UNG) for 11 generations to determine the repair outcomes when that pathway is missing. Surprisingly, no single nucleotide polymorphisms (SNPs) were fixed in any line in generation 11. The pattern of heteroplasmic SNPs was also unaltered through 11 generations. When the rate of cytosine deamination was increased by mitochondrial expression of the cytosine deaminase APOBEC3G, there was an increase in heteroplasmic SNPs but only in mature leaves. Clearly, DNA maintenance in reproductive meristem mitochondria is very effective in the absence of UNG while mitochondrial genomes in differentiated tissue are maintained through a different mechanism or not at all. Several genes involved in DSBR are upregulated in the absence of UNG, indicating that double-strand break repair is a general system of repair in plant mitochondria. It is important to note that the developmental stage of tissues is critically important for these types of experiments.  more » « less
Award ID(s):
1933590
NSF-PAR ID:
10158503
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Plants
Volume:
9
Issue:
2
ISSN:
2223-7747
Page Range / eLocation ID:
261
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Mitochondrial and plastid genomes in land plants exhibit some of the slowest rates of sequence evolution observed in any eukaryotic genome, suggesting an exceptional ability to prevent or correct mutations. However, the mechanisms responsible for this extreme fidelity remain unclear. We tested seven candidate genes involved in cytoplasmic DNA replication, recombination, and repair (POLIA,POLIB,MSH1,RECA3,UNG,FPG, andOGG1) for effects on mutation rates in the model angiospermArabidopsis thalianaby applying a highly accurate DNA sequencing technique (duplex sequencing) that can detect newly arisen mitochondrial and plastid mutations even at low heteroplasmic frequencies. We find that disruptingMSH1(but not the other candidate genes) leads to massive increases in the frequency of point mutations and small indels and changes to the mutation spectrum in mitochondrial and plastid DNA. We also used droplet digital PCR to show transmission of de novo heteroplasmies across generations inmsh1mutants, confirming a contribution to heritable mutation rates. This dual-targeted gene is part of an enigmatic lineage within themutSmismatch repair family that we find is also present outside of green plants in multiple eukaryotic groups (stramenopiles, alveolates, haptophytes, and cryptomonads), as well as certain bacteria and viruses.MSH1has previously been shown to limit ectopic recombination in plant cytoplasmic genomes. Our results point to a broader role in recognition and correction of errors in plant mitochondrial and plastid DNA sequence, leading to greatly suppressed mutation rates perhaps via initiation of double-stranded breaks and repair pathways based on faithful homologous recombination.

     
    more » « less
  2. Abstract

    The Msh2–Msh3 mismatch repair (MMR) complex in Saccharomyces cerevisiae recognizes and directs repair of insertion/deletion loops (IDLs) up to ∼17 nucleotides. Msh2–Msh3 also recognizes and binds distinct looped and branched DNA structures with varying affinities, thereby contributing to genome stability outside post-replicative MMR through homologous recombination, double-strand break repair (DSBR) and the DNA damage response. In contrast, Msh2–Msh3 promotes genome instability through trinucleotide repeat (TNR) expansions, presumably by binding structures that form from single-stranded (ss) TNR sequences. We previously demonstrated that Msh2–Msh3 binding to 5′ ssDNA flap structures interfered with Rad27 (Fen1 in humans)-mediated Okazaki fragment maturation (OFM) in vitro. Here we demonstrate that elevated Msh2–Msh3 levels interfere with DNA replication and base excision repair in vivo. Elevated Msh2–Msh3 also induced a cell cycle arrest that was dependent on RAD9 and ELG1 and led to PCNA modification. These phenotypes also required Msh2–Msh3 ATPase activity and downstream MMR proteins, indicating an active mechanism that is not simply a result of Msh2–Msh3 DNA-binding activity. This study provides new mechanistic details regarding how excess Msh2–Msh3 can disrupt DNA replication and repair and highlights the role of Msh2–Msh3 protein abundance in Msh2–Msh3-mediated genomic instability.

     
    more » « less
  3. The plant-specific RNA Polymerase V (Pol V) plays a key role in gene silencing, but its role in repair of double stranded DNA breaks is unclear. Excision of the transposable element mPing creates double stranded breaks that are repaired by NHEJ. We measured mPing excision site repair in multiple DNA methylation mutants including pol V using an mPing : GFP reporter. Two independent mutant alleles of pol V showed less GFP expression, indicating that the Pol V protein plays a role in excision site repair. Sequence analysis of the pol V excision sites indicated an elevated rate of large deletions consistent with less efficient repair. These results clarify the role of Pol V, but not other RNA-directed DNA methylation proteins (Pol IV) or maintenance DNA methylation pathways ( MET1 ), in the repair of double-strand DNA breaks. 
    more » « less
  4. The plant-specific RNA Polymerase V (Pol V) plays a key role in gene silencing, but its role in repair of double stranded DNA breaks is unclear. Excision of the transposable element mPing creates double stranded breaks that are repaired by NHEJ. We measured mPing excision site repair in multiple DNA methylation mutants including pol V using an mPing:GFP reporter. Two independent mutant alleles of pol V showed less GFP expression, indicating that the Pol V protein plays a role in excision site repair. Sequence analysis of the pol V excision sites indicated an elevated rate of large deletions consistent with less efficient repair. These results clarify the role of Pol V, but not other RNA-directed DNA methylation proteins (Pol IV) or maintenance DNA methylation pathways (MET1), in the repair of double-strand DNA breaks. 
    more » « less
  5. Abstract Alternative end joining (alt-EJ) mechanisms, such as polymerase theta-mediated end joining, are increasingly recognized as important contributors to inaccurate double-strand break repair. We previously proposed an alt-EJ model whereby short DNA repeats near a double-strand break anneal to form secondary structures that prime limited DNA synthesis. The nascent DNA then pairs with microhomologous sequences on the other break end. This synthesis-dependent microhomology-mediated end joining (SD-MMEJ) explains many of the alt-EJ repair products recovered following I-SceI nuclease cutting in Drosophila. However, sequence-specific factors that influence SD-MMEJ repair remain to be fully characterized. Here, we expand the utility of the SD-MMEJ model through computational analysis of repair products at Cas9-induced double-strand breaks for 1100 different sequence contexts. We find evidence at single nucleotide resolution for sequence characteristics that drive successful SD-MMEJ repair. These include optimal primer repeat length, distance of repeats from the break, flexibility of DNA sequence between primer repeats, and positioning of microhomology templates relative to preferred primer repeats. In addition, we show that DNA polymerase theta is necessary for most SD-MMEJ repair at Cas9 breaks. The analysis described here includes a computational pipeline that can be utilized to characterize preferred mechanisms of alt-EJ repair in any sequence context. 
    more » « less