skip to main content

Title: An initial exploration of the perspectives and experiences of diverse learners’ acceptance of online educational engineering games as learning tools in the classroom
This Work-In-Progress falls within the research category of study and, focuses on the experiences and perceptions of first- and second year engineering students when using an online engineering game that was designed to enhance understanding of statics concepts. Technology and online games are increasingly being used in engineering education to help students gain competencies in technical domains in the engineering field. Less is known about the way that these online games are designed and incorporated into the classroom environment and how these factors can ignite inequitable perspectives and experiences among engineering students. Also, little if any work that combines the TAM model and intersectionality of race and gender in engineering education has been done, though several studies have been modified to account for gender or race. This study expands upon the Technology Acceptance Model (TAM) by exploring perspectives of intersectional groups (defined as women of color who are engineering students). A Mixed Method Sequential Exploratory Research Design approach was used that extends the TAM model. Students were asked to play the engineering educational game, complete an open-ended questionnaire and then to participate in a focus group. Early findings suggest that while many students were open to learning to use the more » game and recommended inclusion of online engineering educational games as learning tools in classrooms, only a few indicated that they would use this tool to prepare for exams or technical job interviews. Some of the main themes identified in this study included unintended perpetuation of inequality through bias in favor of students who enjoyed competition-based learning and assessment of knowledge, and bias for students having prior experience in playing online games. Competition-based assessment related to presumed learning of course content enhanced student anxiety and feelings of intimidation and led to some students seeking to “game the game” versus learning the material, in efforts to achieve grade goals. Other students associated use of the game and the classroom weighted grading with intense stress that led them to prematurely stop the use of the engineering tool. Initial findings indicate that both game design and how technology is incorporated into the grading and testing of learning outcomes, influence student perceptions of the technology’s usefulness and ultimately the acceptance of the online game as a "learning tool." Results also point to the need to explore how the crediting and assessment of students’ performance and learning gains in these types of games could yield inequitable experiences in these types of courses. « less
Award ID(s):
Publication Date:
Journal Name:
An initial exploration of the perspectives and experiences of diverse learners' acceptance of online educational engineering games as learning tools in the classroom
Page Range or eLocation-ID:
1 to 9
Sponsoring Org:
National Science Foundation
More Like this
  1. The quest to incorporate digital games into US classrooms has been pervasive in educational communities over the last two decades. Educational video games have been studied as a mechanism for enhancing the engagement and performance of underrepresented groups (UGs) in spatial learning, physics, computer science, general engineering, software and electrical engineering, mechanical engineering (ME) computer aided design, and aerospace engineering. Less than a handful of these studies have explored games’ appeal, efficacy or UG performance as a function of gender. Preliminary findings on a study that explores the appeal, efficacy, and performance of UGs in engineering-based educational video games as a function of gender and those of intersectional backgrounds is discussed. Emphasis is placed on elucidating these students' perceptions of serious game structure, design and content, and how these factors motivate their learning of engineering concepts and self-identification as engineers. This work builds upon the Technology Acceptance Model.
  2. Incorporating games in teaching can help students retain material and become innovative problem solvers through engagement and enjoyment. Here we describe a new board game, “Taphonomy: Dead and Fossilized,” and its use as an active learning tool (material available at doi: 10.18738/T8/NQV2CU). The educational objective is to teach the player about taphonomy and fossilization, while the gameplay objective is to preserve and recover the best fossil collection. Through competitive gameplay, students learn how chemical, physical, and environmental factors, as well as physiology and discovery biases can influence an organism’s preservation and collection potential. The game is modeled after an Early Jurassic fossil deposit for scientific accuracy and relevance. The game was incorporated in undergraduate classroom activities in 20 colleges and universities across the United States. Survey results show that students and teachers were overwhelmingly positive about the game, stating that it was fun and helped them learn or strengthen their knowledge of fossilization. When analyzed statistically, we find that students’ self-reported learning outcomes and opinions vary most significantly with college year, major, ethnicity, and race. White students and geoscience or STEM majors reported the highest levels of learning and enjoyment, with minorities and non-STEM majors responding less favorably. We suggestmore »this game is most advantageous for use in upper-level paleontology classrooms, although it is still beneficial at lower levels. It is critical to use this game as part of a larger lesson plan and tailor it to fit the needs of an individual classroom. Modifications for time and class size, as well as follow-up discussion questions, are included.« less
  3. Additive manufacturing (AM) is prevalent in academic, industrial, and layperson use for the design and creation of objects via joining materials together in a layer upon layer fashion. However, few universities have an undergraduate course dedicated to it. Thus, using NSF IUSE support [grant number redacted for review] from the Exploration and Design Tier of the Engaged Student Learning Track, this project has created and implemented such a course at three large universities: Texas Tech (a Carnegie high research productivity and Hispanic Serving Institution), Kansas State (a Carnegie high research productivity and land grant university) and California State, Northridge (the largest of all the California State campuses and highly ranked in serving underprivileged students). Our research team includes engineering professors and a sociologist trained in assessment and K-12 outreach to determine the effects of the course on the undergraduate and high school students. We are currently in year two of the three years of NSF support. The course focuses on the fundamentals of the three families of prevailing AM processes: extrusion-based, powder-based, and liquid-based, as well as learning about practical solutions to additive manufacturing of common engineering materials including polymers, metals and alloys, ceramics, and composites. It has a lecturemore »plus lab format, in that students learn the fundamentals in a classroom, but then apply and broaden their knowledge in lab projects and independent studies. Additionally, as outreach, we host field trips from local high schools during which the undergraduates give presentations about discrete AM skills, then lead the high school students through a lab project focused on those skills. This creates a pipeline of knowledge about AM for younger students as well as an opportunity for undergraduates to develop leadership and speaking skills while solidifying their knowledge. We are also in the process of uploading videos and lab projects to an online Google Classroom so that those with access to 3D printers in other areas can learn online for free. We are also self-publishing an accompanying textbook and lab manual. Beyond the course itself, one of the innovations of our project is the assessment strategy. For both undergraduates and high school students, we have been able to collect content area knowledge both before and after the class, as well as information about their attitudes towards engineering and self-efficacy beliefs. This has been particularly illuminating in regards to subgroups like women and students of color. Our research questions include: i) what is the knowledge growth about AM during this course? ii) does this differ by university? iii) does this differ by gender or race? iv) what are the best ways to make this course portable to other universities? Preliminary results indicate a statistically significant improvement in knowledge for all students. This was particularly true for women, which may indicate the promise of AM courses in decreasing the female dropout rate in engineering. Attitudes towards engineering and self-efficacy perceptions also differed after the class, but in varying ways by demographic subgroups and university. This will be explored more in the paper.« less
  4. Cherchiglia et al. Effects of ESM Use for Classroom Teams Proceedings of the Nineteenth Annual Pre-ICIS Workshop on HCI Research in MIS, Virtual Conference, December 12, 2020 1 An Exploration of the Effects of Enterprise Social Media Use for Classroom Teams Leticia Cherchiglia Michigan State University Wietske Van Osch HEC Montreal & Michigan State University Yuyang Liang Michigan State University Elisavet Averkiadi Michigan State University ABSTRACT This paper explores the adoption of Microsoft Teams, a group-based Enterprise Social Media (ESM) tool, in the context of a hybrid Information Technology Management undergraduate course from a large midwestern university. With the primary goal of providing insights into the use and design of tools for group-based educational settings, we constructed a model to reflect our expectations that core ESM affordances would enhance students’ perceptions of Microsoft Teams’ functionality and efficiency, which in turn would increase both students’ perceptions of group productivity and students’ actual usage of Microsoft Teams for communication purposes. In our model we used three core ESM affordances from Treem and Leonardi (2013), namely editability (i.e., information can be created and/or edited after creation, usually in a collaborative fashion), persistence (i.e., information is stored permanently), and visibilitymore »(i.e., information is visible to other users). Analysis of quantitative (surveys, server-side; N=62) and qualitative (interviews; N=7) data led to intriguing results. It seems that although students considered that editability, persistency, and visibility affordances within Microsoft Teams were convenient functions of this ESM, problems when working collaboratively (such as connectivity, formatting, and searching glitches) might have prevented considerations of this ESM as fast and user-friendly (i.e., efficient). Moreover, although perceived functionality and efficiency were positively connected to group productivity, hidden/non-intuitive communication features within this ESM might help explain the surprising negative connection between efficiency and usage of this ESM for the purpose of group communication. Another explanation is that, given the plethora of competing tools specifically designed to afford seamless/optimal team communication, students preferred to use more familiar tools or tools perceived as more efficient for group communication than Microsoft Teams, a finding consistent with findings in organizational settings (Van Osch, Steinfield, and Balogh, 2015). Beyond theoretical contributions related to the impact that ESM affordances have on users’ interaction perceptions, and the impact of users’ interaction perceptions on team and system outcomes, from a strategic and practical point of view, our findings revealed several challenges for the use of Microsoft Teams (and perhaps ESM at large) in educational settings: 1) As the demand for online education grows, collaborative tools such as Microsoft Teams should strive to provide seamless experiences for multiple-user access to files and messages; 2) Microsoft Teams should improve its visual design in order to increase ease of use, user familiarity, and intuitiveness; 3) Microsoft Teams appears to have a high-learning curve, partially related to the fact that some features are hidden or take extra steps/clicks to be accessed, thus undermining their use; 4) Team communication is a complex topic which should be further studied because, given the choice, students will fall upon familiar tools therefore undermining the full potential for team collaboration through the ESM. We expect that this paper can provide insights for educators faced with the choice for an ESM tool best-suited for group-based classroom settings, as well as designers interested in adapting ESMs to educational contexts, which is a promising avenue for market expansion.« less
  5. Background.Keeping high school students engaged and motivated to learn complex scientific concepts can be difficult and challenging; this is especially true if the task feels daunting and unfamiliar to the students. Incorporating educational technology, such as KAHOOT, into the classroom can help students learn scientific material even when it is difficult.

    Aim. Our objective is to determine the effectiveness of gamification in an Advanced Placement Biology (AP biology) classroom by using the online game ‘KAHOOT!’ as a supplement to traditional teacher-centered learning. In addition, we determine the use of ‘KAHOOT!’ in enhancing student engagement and the learning experience for biology.

    Methods. A presentation on Transcription and Translation was given to a small group of high school AP Biology students ( n = 18, 18 women). After the presentation, the students were given 15 questions and twenty seconds to answer each question in the ‘KAHOOT!’ game. Both the students and the teacher were given a post-activity survey to assess their interest in the activity.

    Results. Based on the responses in the Students’ Survey, ‘KAHOOT!’ can be used as a gamified assessment tool to help students learn the topic of ‘Transcription and Translation’ by actively engaging them in a fun and excitingmore »manner.

    Conclusion. The overall activity had a positive impact on the students and teacher as the students enjoyed learning Transcription and Translation through the use of ‘KAHOOT!’.

    « less