skip to main content


Title: Reversible nickel-metallacycle formation with a phosphinimine-based pincer ligand
Pincer ligands have a remarkable ability to impart control over small molecule activation chemistry and catalytic activity; therefore, the design of new pincer ligands and the exploration of their reactivity profiles continues to be a frontier in synthetic inorganic chemistry. In this work, a novel, monoanionic NNN pincer ligand containing two phosphinimine donors was used to create a series of mononuclear Ni complexes. Ligand metallation in the presence of NaOPh yielded a nickel phenoxide complex that was used to form a mononuclear hydride complex on treatment with pinacolborane. Attempts at ligand metallation with NaN(SiMe 3 ) 2 resulted in the activation of both phosphinimine methyl groups to yield an anionic, cis -dialkyl product, in which dissociation of one phosphinimine nitrogen leads to retention of a square planar coordination environment about Ni. Protonolysis of this dialkyl species generated a monoalkyl product that retained the 4-membered metallacycle. The insertion of 2,6-dimethylphenyl isocyanide (xylNC) into this nickel metallacycle, followed by proton transfer, generated a new five-membered nickel metallacycle. Kinetic studies suggested rate-limiting proton transfer (KIE ≥ 3.9 ± 0.5) from the α-methylene unit of the putative iminoacyl intermediate.  more » « less
Award ID(s):
1827457
NSF-PAR ID:
10158748
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Dalton Transactions
ISSN:
1477-9226
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Nature uses control of the secondary coordination sphere to facilitate an astounding variety of transformations. Similarly, synthetic chemists have found metal‐ligand cooperativity to be a powerful strategy for designing complexes that can mediate challenging reactivity. In particular, this strategy has been used to facilitate two electron reactions with first row transition metals that more typically engage in one electron redox processes. While NNN pincer ligands feature prominently in this area, examples which can potentially engage in both proton and electron transfer are less common. Dihydrazonopyrrole (DHP) ligands have been isolated in a variety of redox and protonation states when complexed to Ni. However, the redox‐state of this ligand scaffold is less obvious when complexed to metal centers with more accessible redox couples. Here, we synthesize a new series of Fe‐DHP complexes in two distinct oxidation states. Detailed characterization supports that the redox‐chemistry in this set is still primarily ligand based. Finally, these complexes exist as 5‐coordinate species with an open coordination site offering the possibility of enhanced reactivity.

     
    more » « less
  2. Nickel complexes have been widely employed as catalysts in C–C and C–heteroatom bond formation reactions. While Ni(0), Ni( i ), and Ni( ii ) intermediates are most relevant in these transformations, recently Ni( iii ) and Ni( iv ) species have also been proposed to play a role in catalysis. Reported herein is the synthesis, detailed characterization, and reactivity of a series of Ni( ii ) and Ni( iii ) metallacycle complexes stabilized by tetradentate pyridinophane ligands with various N-substituents. Interestingly, while the oxidation of the Ni( ii ) complexes with various other oxidants led to exclusive C–C bond formation in very good yields, the use of O 2 or H 2 O 2 as oxidants led to formation of appreciable amounts of C–O bond formation products, especially for the Ni( ii ) complex supported by an asymmetric pyridinophane ligand containing one tosyl N-substituent. Moreover, cryo-ESI-MS studies support the formation of several high-valent Ni species as key intermediates in this uncommon Ni-mediated oxygenase-type chemistry. 
    more » « less
  3. Abstract

    Pincer‐type nickel–aluminum complexes were synthesized using two equivalents of the phosphinoamide, [PhNCH2PiPr2]. The Ni0–AlIIIcomplexes, {(MesPAlP)Ni}2(μ‐N2) and {(MesPAlP)Ni}2(μ‐COD), whereMesPAlP is (Mes)Al(NPhCH2PiPr2)2, were structurally characterized. The (PAlP)Ni system exhibited cooperative bond cleavage mediated by the two‐site Ni–Al unit, including oxidative addition of aryl halides, H2activation, and ortho‐directed C−H bond activation of pyridine N‐oxide. One intriguing reaction is the reversible intramolecular transfer of the mesityl ring from the Al to the Ni site, which is evocative of the transmetalation step during cross‐coupling catalysis. The aryl‐transfer product,(THF)Al(NPhCH2PiPr2)2Ni(Mes), is the first example of a first‐row transition metal–aluminyl pincer complex. The addition of a judicious donor enables the Al metalloligand to convert reversibly between the alane and aluminyl forms via aryl group transfer to and from Ni, respectively. Theoretical calculations support a zwitterionic Niδ−–Alδ+electronic structure in the nickel–aluminyl complex.

     
    more » « less
  4. Abstract

    Pincer‐type nickel–aluminum complexes were synthesized using two equivalents of the phosphinoamide, [PhNCH2PiPr2]. The Ni0–AlIIIcomplexes, {(MesPAlP)Ni}2(μ‐N2) and {(MesPAlP)Ni}2(μ‐COD), whereMesPAlP is (Mes)Al(NPhCH2PiPr2)2, were structurally characterized. The (PAlP)Ni system exhibited cooperative bond cleavage mediated by the two‐site Ni–Al unit, including oxidative addition of aryl halides, H2activation, and ortho‐directed C−H bond activation of pyridine N‐oxide. One intriguing reaction is the reversible intramolecular transfer of the mesityl ring from the Al to the Ni site, which is evocative of the transmetalation step during cross‐coupling catalysis. The aryl‐transfer product,(THF)Al(NPhCH2PiPr2)2Ni(Mes), is the first example of a first‐row transition metal–aluminyl pincer complex. The addition of a judicious donor enables the Al metalloligand to convert reversibly between the alane and aluminyl forms via aryl group transfer to and from Ni, respectively. Theoretical calculations support a zwitterionic Niδ−–Alδ+electronic structure in the nickel–aluminyl complex.

     
    more » « less
  5. Abstract

    Herein, we report four new chiral 1,4,7‐triazacyclononane (TACN) derivatives and their corresponding nickel(II) chloride complexes. All TACN ligands are bearing one chiral N‐substituent and two alkyl (methyl ortert‐butyl) N‐substituents, and we have developed a new synthetic method for the dimethyl‐substituted TACN derivative, in order to prevent the rotational isomers that hinder the cyclization reaction. The nickel complexes change their coordination geometry significantly depending on the steric bulk of the N‐alkyl substituents, from a dinuclear tris(μ‐chloro)dinickel complex to mononuclear Ni‐dichloride and Ni‐chloride complexes. These complexes were then employed in the alkyl‐alkyl Kumada cross‐coupling reaction and revealed that the more sterically hindered ligands produced more homocoupled product rather than the cross‐coupled product, while the mononuclear Ni‐dichloride complex exhibited significantly lower catalytic activity. These chiral complexes were also employed in enantioconvergent cross‐coupling reactions as well, to afford significant enantioenrichment. Overall, the least sterically hindered Ni complex yields the best yields in the alkyl‐alkyl Kumada cross‐coupling reaction among the four complexes investigated, as well as the highest enantioselectivity.

     
    more » « less