Physical states in nanoscale solids are tied to their crystalline order, morphology, and size. However, deterministically accessing different nanocrystal morphologies from a single phase usually involves complex synthetic routes, catalysts, or multi-step lithographic techniques. Here, we demonstrate the catalyst-free synthesis of nanosheets and nanowires based on the luminescent 2D van der Waals (vdW) phase, GaTe, as a model phase that manifests atomic precision and a highly anisotropic quasi-1D substructure. We program the size and morphology of the resulting nanostructures by varying the relative rates of precursor deposition and diffusion, achieving dense, uniform, and widespread growth. Ultrathin nanowires resulting from this synthesis exhibit strikingly enhanced low-temperature luminescence with narrow near-infrared (NIR) emission bandwidths. These spectral characteristics arise from defect-bound states confined within a nanowire morphology that acts as a deep sub-wavelength optical cavity, making them suitable as optical emitters with small footprints either as stand-alone structures or coupled with other vdW crystals.
more »
« less
High yield production of ultrathin fibroid semiconducting nanowire of Ta2Pd3Se8
Immediately after the demonstration of the high-quality electronic properties in various two dimensional (2D) van der Waals (vdW) crystals fabricated with mechanical exfoliation, many methods have been reported to explore and control large scale fabrications. Comparing with recent advancements in fabricating 2D atomic layered crystals, large scale production of one dimensional (1D) nanowires with thickness approaching molecular or atomic level still remains stagnant. Here, we demonstrate the high yield production of a 1D vdW material, semiconducting Ta2Pd3Se8 nanowires, by means of liquid-phase exfoliation. The thinnest nanowire we have readily achieved is around 1 nm, corresponding to a bundle of one or two molecular ribbons. Transmission electron microscopy (TEM) and transport measurements reveal the as-fabricated Ta2Pd3Se8 nanowires exhibit unexpected high crystallinity and chemical stability. Our low-frequency Raman spectroscopy reveals clear evidence of the existing of weak inter-ribbon bindings. The fabricated nanowire transistors exhibit high switching performance and promising applications for photodetectors.
more »
« less
- Award ID(s):
- 1752997
- PAR ID:
- 10158843
- Date Published:
- Journal Name:
- Nano Research
- ISSN:
- 1998-0124
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Robust atomic-to-meso-scale chirality is now observed in the one-dimensional form of tellurium. This enables a large and counter-intuitive circular-polarization dependent second harmonic generation response above 0.2 which is not present in two-dimensional tellurium. Orientation variations in 1D tellurium nanowires obtained by four-dimensional scanning transmission electron microscopy (4D-STEM) and their correlation with unconventional non-linear optical properties by second harmonic generation circular dichroism (SHG-CD) uncovers an unexpected circular-polarization dependent SHG response from 1D nanowire bundles – an order-of-magnitude higher than in single-crystal two-dimensional tellurium structures – suggesting the atomic- and meso-scale crystalline structure of the 1D material possesses an inherent chirality not present in its 2D form; and which is strong enough to manifest even in the aggregate non-linear optical (NLO) properties of aggregates.more » « less
-
Two-dimensional (2D) atomic layer materials have attracted a great deal of attention due to their superior chemical, physical, and electronic properties, and have demonstrated excellent performance in various applications such as energy storage devices, catalysts, sensors, and transistors. Nevertheless, the cost-effective and large-scale production of high-quality 2D materials is critical for practical applications and progressive development in the industry. Electrochemical exfoliation is a recently introduced technique for the facile, environmentally friendly, fast, large-scale production of 2D materials. In this review, we summarize recent advances in different types of electrochemical exfoliation methods for efficiently preparing 2D materials, along with the characteristics of each method, and then introduce their applications as electrode materials for energy storage devices. Finally, the remaining challenges and prospects for developing the electrochemical exfoliation process of 2D materials for energy storage devices are discussed.more » « less
-
Nanowires of layered van der Waals (vdW) crystals are of interest due to structural characteristics and emerging properties that have no equivalent in conventional 3D crystalline nanostructures. Here, vapor-liquid-solid growth, optoelectronics, and photonics of GaS vdW nanowires are studied. Electron microscopy and diffraction demonstrate the formation of high-quality layered nanostructures with different vdW layer orientation. GaS nanowires with vdW stacking perpendicular to the wire axis have ribbon-like morphologies with lengths up to 100 micrometers and uniform width. Wires with axial layer stacking show tapered morphologies and a corrugated surface due to twinning between successive few-layer GaS sheets. Layered GaS nanowires are excellent wide-bandgap optoelectronic materials with Eg = 2.65 eV determined by single-nanowire absorption measurements. Nanometer-scale spectroscopy on individual nanowires shows intense blue band-edge luminescence along with longer wavelength emissions due to transitions between gap states, and photonic properties such as interference of confined waveguide modes propagating within the nanowires. The combined results show promise for applications in electronics, optoelectronics and photonics, as well as photo- or electrocatalysis owing to a high density of reactive edge sites, and intercalation-type energy storage benefitting from facile access to the interlayer vdW gaps.more » « less
-
Abstract One of the major challenges in the van der Waals (vdW) integration of two-dimensional (2D) materials is achieving high-yield and high-throughput assembly of predefined sequences of monolayers into heterostructure arrays. Mechanical exfoliation has recently been studied as a promising technique to transfer monolayers from a multilayer source synthesized by other techniques, allowing the deposition of a wide variety of 2D materials without exposing the target substrate to harsh synthesis conditions. Although a variety of processes have been developed to exfoliate the 2D materials mechanically from the source and place them deterministically onto a target substrate, they can typically transfer only either a wafer-scale blanket or one small flake at a time with uncontrolled size and shape. Here, we present a method to assemble arrays of lithographically defined monolayer WS2 and MoS2 features from multilayer sources and directly transfer them in a deterministic manner onto target substrates. This exfoliate–align–release process—without the need of an intermediate carrier substrate—is enabled by combining a patterned, gold-mediated exfoliation technique with a new optically transparent, heat-releasable adhesive. WS2/MoS2 vdW heterostructure arrays produced by this method show the expected interlayer exciton between the monolayers. Light-emitting devices using WS2 monolayers were also demonstrated, proving the functionality of the fabricated materials. Our work demonstrates a significant step toward developing mechanical exfoliation as a scalable dry transfer technique for the manufacturing of functional, atomically thin materials.more » « less
An official website of the United States government

