skip to main content


Title: Multicomponent Organic Metal Halide Hybrid with White Emissions
Abstract

Zero‐dimensional (0D) organic metal halide hybrids, in which organic and metal halide ions cocrystallize to form neutral species, are a promising platform for the development of multifunctional crystalline materials. Herein we report the design, synthesis, and characterization of a ternary 0D organic metal halide hybrid, (HMTA)4PbMn0.69Sn0.31Br8, in which the organic cationN‐benzylhexamethylenetetrammonium (HMTA+, C13H19N4+) cocrystallizes with PbBr42−, MnBr42−, and SnBr42−. The wide band gap of the organic cation and distinct optical characteristics of the three metal bromide anions enabled the single‐crystalline “host–guest” system to exhibit emissions from multiple “guest” metal halide species simultaneously. The combination of these emissions led to near‐perfect white emission with a photoluminescence quantum efficiency of around 73 %. Owing to distinct excitations of the three metal halide species, warm‐ to cool‐white emissions could be generated by controlling the excitation wavelength.

 
more » « less
Award ID(s):
1709116 1659661 1828362
NSF-PAR ID:
10158922
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Angewandte Chemie International Edition
Volume:
59
Issue:
33
ISSN:
1433-7851
Page Range / eLocation ID:
p. 14120-14123
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Zero‐dimensional (0D) organic metal halide hybrids, in which organic and metal halide ions cocrystallize to form neutral species, are a promising platform for the development of multifunctional crystalline materials. Herein we report the design, synthesis, and characterization of a ternary 0D organic metal halide hybrid, (HMTA)4PbMn0.69Sn0.31Br8, in which the organic cationN‐benzylhexamethylenetetrammonium (HMTA+, C13H19N4+) cocrystallizes with PbBr42−, MnBr42−, and SnBr42−. The wide band gap of the organic cation and distinct optical characteristics of the three metal bromide anions enabled the single‐crystalline “host–guest” system to exhibit emissions from multiple “guest” metal halide species simultaneously. The combination of these emissions led to near‐perfect white emission with a photoluminescence quantum efficiency of around 73 %. Owing to distinct excitations of the three metal halide species, warm‐ to cool‐white emissions could be generated by controlling the excitation wavelength.

     
    more » « less
  2. Abstract

    Zero‐dimensional (0D) organic metal halide hybrids (OMHHs) have recently emerged as a new class of light emitting materials with exceptional color tunability. While near‐unity photoluminescence quantum efficiencies (PLQEs) are routinely obtained for a large number of 0D OMHHs, it remains challenging to apply them as emitter for electrically driven light emitting diodes (LEDs), largely due to the low conductivity of wide bandgap organic cations. Here, the development of a new OMHH, triphenyl(9‐phenyl‐9H‐carbazol‐3‐yl) phosphonium antimony bromide (TPPcarzSbBr4), as emitter for efficient LEDs, which consists of semiconducting organic cations (TPPcarz+) and light emitting antimony bromide anions (Sb2Br82−), is reported. By replacing one of the phenyl groups in a well‐known tetraphenylphosphonium cation (TPP+) with an electroactive phenylcarbazole group, a semiconducting TPPcarz+cation is developed for the preparation of red emitting 0D TPPcarzSbBr4single crystals with a high PLQE of 93.8%. With solution processed TPPcarzSbBr4thin films (PLQE of 86.1%) as light emitting layer, red LEDs are fabricated to exhibit an external quantum efficiency (EQE) of 5.12%, a peak luminance of 5957 cd m−2, and a current efficiency of 14.2 cd A−1, which are the best values reported to date for electroluminescence devices based on 0D OMHHs.

     
    more » « less
  3. Abstract

    Organic metal halide hybrids (OMHHs) have attracted great research attention owing to their exceptional structure and property tunability. Using appropriate organic and inorganic metal halide components, OMHHs with controlled dimensionalities at the molecular level, from 3D to 2D, 1D, and 0D structures, can be obtained. In 0D OMHHs, anionic metal halide polyhedrons are surrounded and completely isolated by organic cations to form single crystalline “host–guest” structures. These ionically bonded organic–inorganic hybrid systems often exhibit the intrinsic properties of individual metal halide species, for instance, highly efficient Stokes‐shifted broadband emissions. In this progress report, the recent advances in the development and study of luminescent 0D OMHHs are discussed: from synthetic structural control to fundamental understanding of the structure–property relationship and device integration.

     
    more » « less
  4. Abstract

    The photophysical tuning is reported for a series of tetraphenylphosphonium (TPP) metal halide hybrids containing distinct metal halides, TPP2MXn(MXn=SbCl5, MnCl4, ZnCl4, ZnCl2Br2, ZnBr4), from efficient phosphorescence to ultralong afterglow. The afterglow properties of TPP+cations could be suspended for the hybrids containing low band gap emissive metal halide species, such as SbCl52−and MnCl42−, but significantly enhanced for the hybrids containing wide band gap non‐emissive ZnCl42−. Structural and photophysical studies reveal that the enhanced afterglow is attributed to stronger π–π stacking and intermolecular electronic coupling between TPP+cations in TPP2ZnCl4than in the pristine organic ionic compound TPPCl. Moreover, the afterglow in TPP2ZnX4can be tuned by controlling the halide composition, with the change from Cl to Br resulting in a shorter afterglow due to the heavy atom effect.

     
    more » « less
  5. Abstract

    The photophysical tuning is reported for a series of tetraphenylphosphonium (TPP) metal halide hybrids containing distinct metal halides, TPP2MXn(MXn=SbCl5, MnCl4, ZnCl4, ZnCl2Br2, ZnBr4), from efficient phosphorescence to ultralong afterglow. The afterglow properties of TPP+cations could be suspended for the hybrids containing low band gap emissive metal halide species, such as SbCl52−and MnCl42−, but significantly enhanced for the hybrids containing wide band gap non‐emissive ZnCl42−. Structural and photophysical studies reveal that the enhanced afterglow is attributed to stronger π–π stacking and intermolecular electronic coupling between TPP+cations in TPP2ZnCl4than in the pristine organic ionic compound TPPCl. Moreover, the afterglow in TPP2ZnX4can be tuned by controlling the halide composition, with the change from Cl to Br resulting in a shorter afterglow due to the heavy atom effect.

     
    more » « less