skip to main content


Title: Epigenetic Regulation of ABA-Induced Transcriptional Responses in Maize
Plants are subjected to extreme environmental conditions and must adapt rapidly. The phytohormone abscisic acid (ABA) accumulates during abiotic stress, signaling transcriptional changes that trigger physiological responses. Epigenetic modifications often facilitate transcription, particularly at genes exhibiting temporal, tissue-specific and environmentally-induced expression. In maize ( Zea mays ), MEDIATOR OF PARAMUTATION 1 (MOP1) is required for progression of an RNA-dependent epigenetic pathway that regulates transcriptional silencing of loci genomewide. MOP1 function has been previously correlated with genomic regions adjoining particular types of transposable elements and genic regions, suggesting that this regulatory pathway functions to maintain distinct transcriptional activities within genomic spaces, and that loss of MOP1 may modify the responsiveness of some loci to other regulatory pathways. As critical regulators of gene expression, MOP1 and ABA pathways each regulate specific genes. To determine whether loss of MOP1 impacts ABA-responsive gene expression in maize, mop1-1 and Mop1 homozygous seedlings were subjected to exogenous ABA and RNA-sequencing. A total of 3,242 differentially expressed genes (DEGs) were identified in four pairwise comparisons. Overall, ABA-induced changes in gene expression were enhanced in mop1-1 homozygous plants. The highest number of DEGs were identified in ABA-induced mop1-1 mutants, including many transcription factors; this suggests combinatorial regulatory scenarios including direct and indirect transcriptional responses to genetic disruption ( mop1-1 ) and/or stimulus-induction of a hierarchical, cascading network of responsive genes. Additionally, a modest increase in CHH methylation at putative MOP1-RdDM loci in response to ABA was observed in some genotypes, suggesting that epigenetic variation might influence environmentally-induced transcriptional responses in maize.  more » « less
Award ID(s):
1802848
NSF-PAR ID:
10159075
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
G3: Genes|Genomes|Genetics
Volume:
10
Issue:
5
ISSN:
2160-1836
Page Range / eLocation ID:
1727 to 1743
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Fudal, Isabelle ; Di Pietro, Antonio (Ed.)
    ABSTRACT Differential growth conditions typically trigger global transcriptional responses in filamentous fungi. Such fungal responses to environmental cues involve epigenetic regulation, including chemical histone modifications. It has been proposed that conditionally expressed genes, such as those that encode secondary metabolites but also effectors in pathogenic species, are often associated with a specific histone modification, lysine27 methylation of H3 (H3K27me3). However, thus far, no analyses on the global H3K27me3 profiles have been reported under differential growth conditions in order to assess if H3K27me3 dynamics govern differential transcription. Using chromatin immunoprecipitation sequencing (ChIP-seq) and RNA sequencing data from the plant-pathogenic fungus Verticillium dahliae grown in three in vitro cultivation media, we now show that a substantial number of the identified H3K27me3 domains globally display stable profiles among these growth conditions. However, we observe local quantitative differences in H3K27me3 ChIP-seq signals that are associated with a subset of differentially transcribed genes between media. Comparing the in vitro results to expression during plant infection suggests that in planta -induced genes may require chromatin remodeling to achieve expression. Overall, our results demonstrate that some loci display H3K27me3 dynamics associated with concomitant transcriptional variation, but many differentially expressed genes are associated with stable H3K27me3 domains. Thus, we conclude that while H3K27me3 is required for transcriptional repression, it does not appear that transcriptional activation requires the global erasure of H3K27me3. We propose that the H3K27me3 domains that do not undergo dynamic methylation may contribute to transcription through other mechanisms or may serve additional genomic regulatory functions. IMPORTANCE In many organisms, including filamentous fungi, epigenetic mechanisms that involve chemical and physical modifications of DNA without changing the genetic sequence have been implicated in transcriptional responses upon developmental or environmental cues. In fungi, facultative heterochromatin that can decondense to allow transcription in response to developmental changes or environmental stimuli is characterized by the trimethylation of lysine 27 on histone H3 (H3K27me3), and H3K27me3 has been implicated in transcriptional regulation, although the precise mechanisms and functions remain enigmatic. Based on ChIP and RNA sequencing data, we show for the soilborne broad-host-range vascular wilt plant-pathogenic fungus Verticillium dahliae that although some loci display H3K27me3 dynamics that can contribute to transcriptional variation, other loci do not show such a dependence. Thus, although we recognize that H3K27me3 is required for transcriptional repression, we also conclude that this mark is not a conditionally responsive global regulator of differential transcription upon responses to environmental cues. 
    more » « less
  2. Abstract

    Sex types of papaya are controlled by a pair of nascent sex chromosomes, but molecular genetic mechanisms of sex determination and sex differentiation in papaya are still unclear. We performed comparative analysis of transcriptomic profiles of male and female floral buds at the early development stage before the initiation of reproductive organ primordia at which there is no morphological difference between male and female flowers. A total of 1734 differentially expressed genes (DEGs) were identified, of which 923 showed female-biased expression and 811 showed male-biased expression. Functional annotation revealed that genes related to plant hormone biosynthesis and signaling pathways, especially in abscisic acid and auxin pathways, were overrepresented in the DEGs. Transcription factor binding motifs, such as MYB2, GAMYB, and AP2/EREBP, were enriched in the promoters of the hormone-related DEGs, and transcription factors with those motifs also exhibited differential expression between sex types. Among these DEGs, we also identified 11 genes in the non-recombining region of the papaya sex chromosomes and 9 genes involved in stamen and carpel development. Our results suggested that sex differentiation in papaya may be regulated by multiple layers of regulation and coordination and involved transcriptional, epigenetic, and phytohormone regulation. Hormones, especially ABA and auxin, transcription factors, and genes in the non-recombination region of the sex chromosome could be involved in this process. Our findings may facilitate the elucidation of signal transduction and gene interaction in sex differentiation of unisexual flowers in papaya.

     
    more » « less
  3. Abstract

    Goss's wilt, caused by the Gram-positive actinobacterium Clavibacter nebraskensis, is an important bacterial disease of maize. The molecular and genetic mechanisms of resistance to the bacterium, or, in general, Gram-positive bacteria causing plant diseases, remain poorly understood. Here, we examined the genetic basis of Goss's wilt through differential gene expression, standard genome-wide association mapping (GWAS), extreme phenotype (XP) GWAS using highly resistant (R) and highly susceptible (S) lines, and quantitative trait locus (QTL) mapping using 3 bi-parental populations, identifying 11 disease association loci. Three loci were validated using near-isogenic lines or recombinant inbred lines. Our analysis indicates that Goss's wilt resistance is highly complex and major resistance genes are not commonly present. RNA sequencing of samples separately pooled from R and S lines with or without bacterial inoculation was performed, enabling identification of common and differential gene responses in R and S lines. Based on expression, in both R and S lines, the photosynthesis pathway was silenced upon infection, while stress-responsive pathways and phytohormone pathways, namely, abscisic acid, auxin, ethylene, jasmonate, and gibberellin, were markedly activated. In addition, 65 genes showed differential responses (up- or down-regulated) to infection in R and S lines. Combining genetic mapping and transcriptional data, individual candidate genes conferring Goss's wilt resistance were identified. Collectively, aspects of the genetic architecture of Goss's wilt resistance were revealed, providing foundational data for mechanistic studies.

     
    more » « less
  4. Abstract Background Efforts to understand genetic variability involved in an individual’s susceptibility to chronic pain support a role for upstream regulation by epigenetic mechanisms. Methods To examine the transcriptomic and epigenetic basis of chronic pain that resides in the peripheral nervous system, we used RNA-seq and ATAC-seq of the rat dorsal root ganglion (DRG) to identify novel molecular pathways associated with pain hypersensitivity in two well-studied persistent pain models induced by chronic constriction injury (CCI) of the sciatic nerve and intra-plantar injection of complete Freund’s adjuvant (CFA) in rats. Results Our RNA-seq studies identify a variety of biological process related to synapse organization, membrane potential, transmembrane transport, and ion binding. Interestingly, genes that encode transcriptional regulators were disproportionately downregulated in both models. Our ATAC-seq data provide a comprehensive map of chromatin accessibility changes in the DRG. A total of 1123 regions showed changes in chromatin accessibility in one or both models when compared to the naïve and 31 shared differentially accessible regions (DAR)s. Functional annotation of the DARs identified disparate molecular functions enriched for each pain model which suggests that chromatin structure may be altered differently following sciatic nerve injury and hind paw inflammation. Motif analysis identified 17 DNA sequences known to bind transcription factors in the CCI DARs and 33 in the CFA DARs. Two motifs were significantly enriched in both models. Conclusions Our improved understanding of the changes in chromatin accessibility that occur in chronic pain states may identify regulatory genomic elements that play essential roles in modulating gene expression in the DRG. 
    more » « less
  5. Abstract

    In plants,N‐acylethanolamines (NAEs) are most abundant in desiccated seeds and their levels decline during germination and early seedling establishment. However, endogenous NAE levels rise in seedlings when ABA or environmental stress is applied, and this results in an inhibition of further seedling development. When the most abundant, polyunsaturated NAEs of linoleic acid (18:2) and linolenic acid (18:3) were exogenously applied, seedling development was affected in an organ‐specific manner. NAE 18:2 primarily affected primary root elongation and NAE 18:3 primarily affected cotyledon greening and expansion and overall seedling growth. The molecular components and signaling mechanisms involved in this pathway are not well understood. In addition, the bifurcating nature of this pathway provides a unique system in which to study the spatial aspects and interaction of these lipid‐specific and organ‐targeted signaling pathways. Using whole transcriptome sequencing (RNA‐seq) and differential expression analysis, we identified early (1–3 hr) transcriptional changes induced by the exogenous treatment of NAE 18:2 and NAE 18:3 in cotyledons, roots, and seedlings. These two treatments led to a significant enrichment in ABA‐response and chitin‐response genes in organs where the treatments led to changes in development. InArabidopsisseedlings, NAE 18:2 treatment led to the repression of genes involved in cell wall biogenesis and organization in roots and seedlings. In addition, cotyledons, roots, and seedlings treated with NAE 18:3 also showed a decrease in transcripts that encode proteins involved in growth processes. NAE 18:3 also led to changes in the abundance of transcripts involved in the modulation of chlorophyll biosynthesis and catabolism in cotyledons. Overall, NAE 18:2 and NAE 18:3 treatment led to lipid‐type and organ‐specific gene expression changes that include overlapping and non‐overlapping gene sets. These data will provide future, rich opportunities to examine the genetic pathways involved in transducing early signals into downstream physiological changes in seedling growth.

     
    more » « less