- Award ID(s):
- 1802848
- Publication Date:
- NSF-PAR ID:
- 10159075
- Journal Name:
- G3: Genes|Genomes|Genetics
- Volume:
- 10
- Issue:
- 5
- Page Range or eLocation-ID:
- 1727 to 1743
- ISSN:
- 2160-1836
- Sponsoring Org:
- National Science Foundation
More Like this
-
Fudal, Isabelle ; Di Pietro, Antonio (Ed.)ABSTRACT Differential growth conditions typically trigger global transcriptional responses in filamentous fungi. Such fungal responses to environmental cues involve epigenetic regulation, including chemical histone modifications. It has been proposed that conditionally expressed genes, such as those that encode secondary metabolites but also effectors in pathogenic species, are often associated with a specific histone modification, lysine27 methylation of H3 (H3K27me3). However, thus far, no analyses on the global H3K27me3 profiles have been reported under differential growth conditions in order to assess if H3K27me3 dynamics govern differential transcription. Using chromatin immunoprecipitation sequencing (ChIP-seq) and RNA sequencing data from the plant-pathogenic fungus Verticillium dahliae grown in three in vitro cultivation media, we now show that a substantial number of the identified H3K27me3 domains globally display stable profiles among these growth conditions. However, we observe local quantitative differences in H3K27me3 ChIP-seq signals that are associated with a subset of differentially transcribed genes between media. Comparing the in vitro results to expression during plant infection suggests that in planta -induced genes may require chromatin remodeling to achieve expression. Overall, our results demonstrate that some loci display H3K27me3 dynamics associated with concomitant transcriptional variation, but many differentially expressed genes are associated with stable H3K27me3 domains. Thus,more »
-
Abstract Sex types of papaya are controlled by a pair of nascent sex chromosomes, but molecular genetic mechanisms of sex determination and sex differentiation in papaya are still unclear. We performed comparative analysis of transcriptomic profiles of male and female floral buds at the early development stage before the initiation of reproductive organ primordia at which there is no morphological difference between male and female flowers. A total of 1734 differentially expressed genes (DEGs) were identified, of which 923 showed female-biased expression and 811 showed male-biased expression. Functional annotation revealed that genes related to plant hormone biosynthesis and signaling pathways, especially in abscisic acid and auxin pathways, were overrepresented in the DEGs. Transcription factor binding motifs, such as MYB2, GAMYB, and AP2/EREBP, were enriched in the promoters of the hormone-related DEGs, and transcription factors with those motifs also exhibited differential expression between sex types. Among these DEGs, we also identified 11 genes in the non-recombining region of the papaya sex chromosomes and 9 genes involved in stamen and carpel development. Our results suggested that sex differentiation in papaya may be regulated by multiple layers of regulation and coordination and involved transcriptional, epigenetic, and phytohormone regulation. Hormones, especially ABA and auxin,more »
-
Abstract Background Efforts to understand genetic variability involved in an individual’s susceptibility to chronic pain support a role for upstream regulation by epigenetic mechanisms. Methods To examine the transcriptomic and epigenetic basis of chronic pain that resides in the peripheral nervous system, we used RNA-seq and ATAC-seq of the rat dorsal root ganglion (DRG) to identify novel molecular pathways associated with pain hypersensitivity in two well-studied persistent pain models induced by chronic constriction injury (CCI) of the sciatic nerve and intra-plantar injection of complete Freund’s adjuvant (CFA) in rats. Results Our RNA-seq studies identify a variety of biological process related to synapse organization, membrane potential, transmembrane transport, and ion binding. Interestingly, genes that encode transcriptional regulators were disproportionately downregulated in both models. Our ATAC-seq data provide a comprehensive map of chromatin accessibility changes in the DRG. A total of 1123 regions showed changes in chromatin accessibility in one or both models when compared to the naïve and 31 shared differentially accessible regions (DAR)s. Functional annotation of the DARs identified disparate molecular functions enriched for each pain model which suggests that chromatin structure may be altered differently following sciatic nerve injury and hind paw inflammation. Motif analysis identified 17 DNA sequencesmore »
-
In maize, starch mutants have facilitated characterization of key genes involved in endosperm starch biosynthesis such as large subunit of AGPase Shrunken2 ( Sh2 ) and isoamylase type DBE Sugary1 ( Su1 ). While many starch biosynthesis enzymes have been characterized, the mechanisms of certain genes (including Sugary enhancer1 ) are yet undefined, and very little is understood about the regulation of starch biosynthesis. As a model, we utilize commercially important sweet corn mutations, sh2 and su1 , to genetically perturb starch production in the endosperm. To characterize the transcriptomic response to starch mutations and identify potential regulators of this pathway, differential expression and coexpression network analysis was performed on near-isogenic lines (NILs) (wildtype, sh2 , and su1 ) in six genetic backgrounds. Lines were grown in field conditions and kernels were sampled in consecutive developmental stages (blister stage at 14 days after pollination (DAP), milk stage at 21 DAP, and dent stage at 28 DAP). Kernels were dissected to separate embryo and pericarp from the endosperm tissue and 3′ RNA-seq libraries were prepared. Mutation of the Su1 gene led to minimal changes in the endosperm transcriptome. Responses to loss of sh2 function include increased expression of sugar (SWEET) transportersmore »
-
Abstract The ability to translate a single genome into multiple phenotypes, or developmental plasticity, defines how phenotype derives from more than just genes. However, to study the evolutionary targets of plasticity and their evolutionary fates, we need to understand how genetic regulators of plasticity control downstream gene expression. Here, we have identified a transcriptional response specific to polyphenism (i.e., discrete plasticity) in the nematode Pristionchus pacificus. This species produces alternative resource-use morphs—microbivorous and predatory forms, differing in the form of their teeth, a morphological novelty—as influenced by resource availability. Transcriptional profiles common to multiple polyphenism-controlling genes in P. pacificus reveal a suite of environmentally sensitive loci, or ultimate target genes, that make up an induced developmental response. Additionally, in vitro assays show that one polyphenism regulator, the nuclear receptor NHR-40, physically binds to promoters with putative HNF4α (the nuclear receptor class including NHR-40) binding sites, suggesting this receptor may directly regulate genes that describe alternative morphs. Among differentially expressed genes were morph-limited genes, highlighting factors with putative “on–off” function in plasticity regulation. Further, predatory morph-biased genes included candidates—namely, all four P. pacificus homologs of Hsp70, which have HNF4α motifs—whose natural variation in expression matches phenotypic differences among P. pacificus wildmore »