skip to main content


Title: Nickel‐Catalyzed Synthesis of Dialkyl Ketones from the Coupling of N‐Alkyl Pyridinium Salts with Activated Carboxylic Acids
Abstract

While ketones are among the most versatile functional groups, their synthesis remains reliant upon reactive and low‐abundance starting materials. In contrast, amide formation is the most‐used bond‐construction method in medicinal chemistry because the chemistry is reliable and draws upon large and diverse substrate pools. A new method for the synthesis of ketones is presented here that draws from the same substrates used for amide bond synthesis: amines and carboxylic acids. A nickel terpyridine catalyst couples N‐alkyl pyridinium salts with in situ formed carboxylic acid fluorides or 2‐pyridyl esters under reducing conditions (Mn metal). The reaction has a broad scope, as demonstrated by the synthesis of 35 different ketones bearing a wide variety of functional groups with an average yield of 60±16 %. This approach is capable of coupling diverse substrates, including pharmaceutical intermediates, to rapidly form complex ketones.

 
more » « less
NSF-PAR ID:
10159127
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Angewandte Chemie
Volume:
132
Issue:
32
ISSN:
0044-8249
Page Range / eLocation ID:
p. 13586-13591
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    While ketones are among the most versatile functional groups, their synthesis remains reliant upon reactive and low‐abundance starting materials. In contrast, amide formation is the most‐used bond‐construction method in medicinal chemistry because the chemistry is reliable and draws upon large and diverse substrate pools. A new method for the synthesis of ketones is presented here that draws from the same substrates used for amide bond synthesis: amines and carboxylic acids. A nickel terpyridine catalyst couples N‐alkyl pyridinium salts with in situ formed carboxylic acid fluorides or 2‐pyridyl esters under reducing conditions (Mn metal). The reaction has a broad scope, as demonstrated by the synthesis of 35 different ketones bearing a wide variety of functional groups with an average yield of 60±16 %. This approach is capable of coupling diverse substrates, including pharmaceutical intermediates, to rapidly form complex ketones.

     
    more » « less
  2. Abstract

    The selective introduction of amine groups within deconstruction products of lignin could provide an avenue for valorizing waste biomass while achieving a green synthesis of industrially relevant building blocks from sustainable sources. Here, we built and characterized enzyme cascades that create aldehydes and subsequently primary amines from diverse lignin‐derived carboxylic acids using a carboxylic acid reductase (CAR) and an ω‐transaminase (TA). Unlike previous studies that have paired CAR and TA enzymes, here we examine multiple homologs of each of these enzymes and a broader set of candidate substrates. In addition, we compare the performance of these systems in cell‐free and resting whole‐cell biocatalysis formats using the conversion of vanillate to vanillyl amine as model chemistry. We also demonstrate that resting whole cells can be recycled for multiple batch reactions. We used the knowledge gained from this study to produce several amines from carboxylic acid precursors using one‐pot biocatalytic reactions, several of which we report for the first time. These results expand our knowledge of these industrially relevant enzyme families to new substrates and contexts for environmentally friendly and potentially low‐cost synthesis of diverse aryl aldehydes and amines.

     
    more » « less
  3. The amide bond represents one of the most fundamental functional groups in chemistry. The properties of amides are defined by amidic resonance (n N →π* C=O conjugation), which enforces planarity of the six atoms comprising the amide bond. Despite the importance of 4-halo-substituted benzamides in organic synthesis, molecular interactions and medicinal chemistry, the effect of 4-halo-substitution on the properties of the amide bond in N , N -disubstituted benzamides has not been studied. Herein, we report the crystal structures and energetic properties of a full series of 4-halobenzamides. The structures of four 4-halobenzamides (halo = iodo, bromo, chloro and fluoro) in the N -morpholinyl series have been determined, namely 4-[(4-halophenyl)carbonyl]morpholine, C 11 H 12 X NO 2 , for halo = iodo ( X = I), bromo ( X = Br), chloro ( X = Cl) and fluoro ( X = F). Computations have been used to determine the effect of halogen substitution on the structures and resonance energies. 4-Iodo- N -morpholinylbenzamide crystallized with a significant distortion of the amide bond (τ + χ N = 33°). The present study supports the correlation between the Ar—C(O) axis twist angle and the twist angle of the amide N—C(O) bond. Comparison of resonance energies in synthetically valuable N -morpholinyl and N -piperidinyl amides demonstrates that the O atom of the morpholinyl ring has a negligible effect on amidic resonance in the series. 
    more » « less
  4. Abstract

    Direct preparation of alkylated amide‐derivatives by cross‐coupling chemistry using sustainable protocols is challenging due to sensitivity of the amide functional group to reaction conditions. Herein, we report the synthesis of alkyl‐substituted amides by iron‐catalyzed C(sp2)−C(sp3) cross‐coupling of Grignard reagents with aryl chlorides. The products of these reactions are broadly used in the synthesis of pharmaceuticals, agrochemicals and other biologically‐active molecules. Furthermore, amides are used as versatile intermediates that can participate in the synthesis of valuable ketones and amines, providing access to motifs of broad synthetic interest. The reaction is characterized by its good substrate scope, tolerating a range of amide substitution, including sterically‐bulky, sensitive and readily modifiable amides. The reaction is compatible with challenging organometallics possessing β‐hydrogens, and proceeds under very mild, operationally‐simple conditions. Optimization of the catalyst system demonstrated the beneficial effect of O‐coordinating ligands on the cross‐coupling. The reaction was found to be fully chemoselective for the mono‐substitution at the less sterically‐hindered position. Mechanistic studies establish the order of reactivity and provide insight into the role of amide to control mono‐selectivity of the alkylation. The protocol provides the possibility for convenient access to alkyl‐amide structural building blocks using sustainable cross‐coupling conditions with high efficiency.

    magnified image

     
    more » « less
  5. null (Ed.)
    Abstract Amides are among the most important and ubiquitous functional groups in organic chemistry and process development. In this Practical Synthetic Procedure, a protocol for the Suzuki–Miyaura cross-coupling of amides by selective N–C(O) bond activation catalyzed by commercially available, air- and moisture-stable palladium/N-heterocyclic carbene (NHC) complexes is described. The procedure described involves [Pd(IPr)(cin)Cl] [IPr = 2,6-(diisopropylphenyl)imidazol-2-ylidene, cin = cinnamyl] at 0.10 mol% at room temperature and is performed on decagram scale. Furthermore, a procedure for the synthesis of amide starting materials is accomplished via selective N-tert-butoxycarbonylation, which is the preferred method over N-acylation. The present protocol carries advantages of operational simplicity, commercial availability of catalysts, and excellent conversions at low catalyst loadings. The method is generally useful for activation of N–C(O) amide bonds in a broad spectrum of amide precursors. The protocol should facilitate the implementation of amide cross-coupling reactions. 
    more » « less