skip to main content


Title: Thermal Shock Synthesis of Nanocatalyst by 3D‐Printed Miniaturized Reactors
Abstract

High temperature synthesis and treatments are ubiquitous in chemical reactions and material manufacturing. However, conventional sintering furnaces are bulky and inefficient with a narrow temperature range (<1500 K) and slow heating rates (<100 K min−1), which are undesirable for many applications that require transient heating to produce ideal nanostructures. Herein, a 3D‐printed, miniaturized reactor featuring a dense micro‐grid design is developed to maximize the material contact and therefore acheive highly efficient and controllable heating. By 3D printing, a versatile, miniaturized reactor with microscale features can be constructed, which can reach a much wider temperature range (up to ≈3000 K) with ultrafast heating/cooling rates of ≈104K s−1. To demonstrate the utility of the design, rapid and batch synthesis of Ru nanoparticles supported in ordered mesoporous carbon is performed by transient heating (1500 K, 500 ms). The resulting ultrafine and uniform Ru nanoparticles (≈2 nm) can serve as a cathode in Li‐CO2batteries with good cycling stability. The miniaturized reactor, with versatile shape design and highly controllable heating capabilities, provides a platform for nanocatalyst synthesis with localized and ultrafast heating toward high temperatures that is otherwise challenging to achieve.

 
more » « less
Award ID(s):
1635221
NSF-PAR ID:
10456778
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Small
Volume:
16
Issue:
22
ISSN:
1613-6810
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Solution‐processable semiconducting 2D nanoplates and 1D nanorods are attractive building blocks for diverse technologies, including thermoelectrics, optoelectronics, and electronics. However, transforming colloidal nanoparticles into high‐performance and flexible devices remains a challenge. For example, flexible films prepared by solution‐processed semiconducting nanocrystals are typically plagued by poor thermoelectric and electrical transport properties. Here, a highly scalable 3D conformal additive printing approach to directly convert solution‐processed 2D nanoplates and 1D nanorods into high‐performing flexible devices is reported. The flexible films printed using Sb2Te3nanoplates and subsequently sintered at 400 °C demonstrate exceptional thermoelectric power factor of 1.5 mW m−1K−2over a wide temperature range (350–550 K). By synergistically combining Sb2Te32D nanoplates with Te 1D nanorods, the power factor of the flexible film reaches an unprecedented maximum value of 2.2 mW m−1K−2at 500 K, which is significantly higher than the best reported values for p‐type flexible thermoelectric films. A fully printed flexible generator device exhibits a competitive electrical power density of 7.65 mW cm−2with a reasonably small temperature difference of 60 K. The versatile printing method for directly transforming nanoscale building blocks into functional devices paves the way for developing not only flexible energy harvesters but also a broad range of flexible/wearable electronics and sensors.

     
    more » « less
  2. Multi-elemental alloy nanoparticles (MEA-NPs) hold great promise for catalyst discovery in a virtually unlimited compositional space. However, rational and controllable synthesize of these intrinsically complex structures remains a challenge. Here, we report the computationally aided, entropy-driven design and synthesis of highly efficient and durable catalyst MEA-NPs. The computational strategy includes prescreening of millions of compositions, prediction of alloy formation by density functional theory calculations, and examination of structural stability by a hybrid Monte Carlo and molecular dynamics method. Selected compositions can be efficiently and rapidly synthesized at high temperature (e.g., 1500 K, 0.5 s) with excellent thermal stability. We applied these MEA-NPs for catalytic NH 3 decomposition and observed outstanding performance due to the synergistic effect of multi-elemental mixing, their small size, and the alloy phase. We anticipate that the computationally aided rational design and rapid synthesis of MEA-NPs are broadly applicable for various catalytic reactions and will accelerate material discovery. 
    more » « less
  3. Thermo-optical and nonlinear property characterization of refractive optical components is essential for endoscopic instrumentation that utilizes high-power, high-repetition-rate ultrafast lasers. For example, ytterbium-doped fiber lasers are well suited for ultrafast laser microsurgery applications; however, the thermo-optical responses of many common lens substrates are not well understood at 1035 nm wavelength. Using az-scan technique, we first measured the nonlinear refractive indices ofCaF2,MgF2, andBaF2at 1035 nm and found values that match well with those from the literature at 1064 nm. To elucidate effects of thermal lensing, we performedz-scans at multiple laser repetition rates and multiple average powers. The results showed negligible thermal effects up to an average power of 1 W and at 10 W material-specific thermal lensing significantly alteredz-scan measurements. Using a 2D temperature model, we could determine the source of the observed thermal lensing effects. Linear absorption was determined as the main source of heating in these crystals. On the other hand, inclusion of nonlinear absorption as an additional heat source in the simulations showed that thermal lensing in borosilicate glass was strongly influenced by nonlinear absorption. This method can potentially provide a sensitive method to measure small nonlinear absorption coefficients of transparent optical materials. These results can guide design of miniaturized optical systems for ultrafast laser surgery and deep-tissue imaging probes.

     
    more » « less
  4. For the first time, a fast heating–cooling process is reported for the synthesis of carbon‐coated nickel (Ni) nanoparticles on a reduced graphene oxide (RGO) matrix (nano‐Ni@C/RGO) as a high‐performance H2O2fuel catalyst. The Joule heating temperature can reach up to ≈2400 K and the heating time can be less than 0.1 s. Ni microparticles with an average diameter of 2 µm can be directly converted into nanoparticles with an average diameter of 75 nm. The Ni nanoparticles embedded in RGO are evaluated for electro‐oxidation performance as a H2O2fuel in a direct peroxide–peroxide fuel cell, which exhibits an electro‐oxidation current density of 602 mA cm−2at 0.2 V (vs Ag/AgCl), ≈150 times higher than the original Ni microparticles embedded in the RGO matrix (micro‐Ni/RGO). The high‐temperature, fast Joule heating process also leads to a 4–5 nm conformal carbon coating on the surface of the Ni nanoparticles, which anchors them to the RGO nanosheets and leads to an excellent catalytic stability. The newly developed nano‐Ni@C/RGO composites by Joule heating hold great promise for a range of emerging energy applications, including the advanced anode materials of fuel cells.

     
    more » « less
  5. Abstract

    Reconfiguration of amorphous complex oxides provides a readily controllable source of stress that can be leveraged in nanoscale assembly to access a broad range of 3D geometries and hybrid materials. An amorphous SrTiO3layer on a Si:B/Si1−xGex:B heterostructure is reconfigured at the atomic scale upon heating, exhibiting a change in volume of ≈2% and accompanying biaxial stress. The Si:B/Si1−xGex:B bilayer is fabricated by molecular beam epitaxy, followed by sputter deposition of SrTiO3at room temperature. The processes yield a hybrid oxide/semiconductor nanomembrane. Upon release from the substrate, the nanomembrane rolls up and has a curvature determined by the stress in the epitaxially grown Si:B/Si1−xGex:B heterostructure. Heating to 600 °C leads to a decrease of the radius of curvature consistent with the development of a large compressive biaxial stress during the reconfiguration of SrTiO3. The control of stresses via post‐deposition processing provides a new route to the assembly of complex‐oxide‐based heterostructures in 3D geometry. The reconfiguration of metastable mechanical stressors enables i) synthesis of various types of strained superlattice structures that cannot be fabricated by direct growth and ii) technologies based on strain engineering of complex oxides via highly scalable lithographic processes and on large‐area semiconductor substrates.

     
    more » « less