skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Iroki: automatic customization and visualization of phylogenetic trees
Phylogenetic trees are an important analytical tool for evaluating community diversity and evolutionary history. In the case of microorganisms, the decreasing cost of sequencing has enabled researchers to generate ever-larger sequence datasets, which in turn have begun to fill gaps in the evolutionary history of microbial groups. However, phylogenetic analyses of these types of datasets create complex trees that can be challenging to interpret. Scientific inferences made by visual inspection of phylogenetic trees can be simplified and enhanced by customizing various parts of the tree. Yet, manual customization is time-consuming and error prone, and programs designed to assist in batch tree customization often require programming experience or complicated file formats for annotation. Iroki, a user-friendly web interface for tree visualization, addresses these issues by providing automatic customization of large trees based on metadata contained in tab-separated text files. Iroki’s utility for exploring biological and ecological trends in sequencing data was demonstrated through a variety of microbial ecology applications in which trees with hundreds to thousands of leaf nodes were customized according to extensive collections of metadata. The Iroki web application and documentation are available at https://www.iroki.net or through the VIROME portal http://virome.dbi.udel.edu . Iroki’s source code is released under the MIT license and is available at https://github.com/mooreryan/iroki .  more » « less
Award ID(s):
1736030
PAR ID:
10159246
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
PeerJ
Volume:
8
ISSN:
2167-8359
Page Range / eLocation ID:
e8584
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. With the advent of single-cell DNA sequencing, it is now possible to infer the evolutionary history of thousands of tumor cells obtained from a single patient. This evolutionary history, which takes the shape of a tree, reveals the mode of evolution of the specific cancer under study and, in turn, helps with clinical diagnosis, prognosis, and therapeutic treatment. In this study we focus on the question of determining the mode of evolution of tumor cells from their inferred evolutionary history. In particular, we employ recursive neural networks that capture tree structures to classify the evolutionary history of tumor cells into one of four modes—linear, branching, neutral, and punctuated. We trained our model, MoTERNN, using simulated data in a supervised fashion and applied it to a real phylogenetic tree obtained from single-cell DNA sequencing data. MoTERNN is implemented in Python and is publicly available at https://github.com/NakhlehLab/MoTERNN. 
    more » « less
  2. Abstract SummarySequencing data resources have increased exponentially in recent years, as has interest in large-scale meta-analyses of integrated next-generation sequencing datasets. However, curation of integrated datasets that match a user’s particular research priorities is currently a time-intensive and imprecise task. MetaSeek is a sequencing data discovery tool that enables users to flexibly search and filter on any metadata field to quickly find the sequencing datasets that meet their needs. MetaSeek automatically scrapes metadata from all publicly available datasets in the Sequence Read Archive, cleans and parses messy, user-provided metadata into a structured, standard-compliant database and predicts missing fields where possible. MetaSeek provides a web-based graphical user interface and interactive visualization dashboard, as well as a programmatic API to rapidly search, filter, visualize, save, share and download matching sequencing metadata. Availability and implementationThe MetaSeek online interface is available at https://www.metaseek.cloud/. The MetaSeek database can also be accessed via API to programmatically search, filter and download all metadata. MetaSeek source code, metadata scrapers and documents are available at https://github.com/MetaSeek-Sequencing-Data-Discovery/metaseek/. 
    more » « less
  3. Abstract Motivation There has been recent increased interest in using algorithmic methods to infer the evolutionary tree underlying the developmental history of a tumor. Quantitative measures that compare such trees are vital to a number of different applications including benchmarking tree inference methods and evaluating common inheritance patterns across patients. However, few appropriate distance measures exist, and those that do have low resolution for differentiating trees or do not fully account for the complex relationship between tree topology and the inheritance of the mutations labeling that topology. Results Here we present two novel distance measures, Common Ancestor Set distance (CASet) and Distinctly Inherited Set Comparison distance (DISC), that are specifically designed to account for the subclonal mutation inheritance patterns characteristic of tumor evolutionary trees. We apply CASet and DISC to multiple simulated datasets and two breast cancer datasets and show that our distance measures allow for more nuanced and accurate delineation between tumor evolutionary trees than existing distance measures. Availability and implementation Implementations of CASet and DISC are freely available at: https://bitbucket.org/oesperlab/stereodist. Supplementary information Supplementary data are available at Bioinformatics online. 
    more » « less
  4. Abstract MotivationThe acquisition of somatic mutations by a tumor can be modeled by a type of evolutionary tree. However, it is impossible to observe this tree directly. Instead, numerous algorithms have been developed to infer such a tree from different types of sequencing data. But such methods can produce conflicting trees for the same patient, making it desirable to have approaches that can combine several such tumor trees into a consensus or summary tree. We introduce The Weighted m-Tumor Tree Consensus Problem (W-m-TTCP) to find a consensus tree among multiple plausible tumor evolutionary histories, each assigned a confidence weight, given a specific distance measure between tumor trees. We present an algorithm called TuELiP that is based on integer linear programming which solves the W-m-TTCP, and unlike other existing consensus methods, allows the input trees to be weighted differently. ResultsOn simulated data we show that TuELiP outperforms two existing methods at correctly identifying the true underlying tree used to create the simulations. We also show that the incorporation of weights can lead to more accurate tree inference. On a Triple-Negative Breast Cancer dataset, we show that including confidence weights can have important impacts on the consensus tree identified. AvailabilityAn implementation of TuELiP and simulated datasets are available at https://bitbucket.org/oesperlab/consensus-ilp/src/main/. 
    more » « less
  5. Summary Rooted and ranked phylogenetic trees are mathematical objects that are useful in modelling hierarchical data and evolutionary relationships with applications to many fields such as evolutionary biology and genetic epidemiology. Bayesian phylogenetic inference usually explores the posterior distribution of trees via Markov chain Monte Carlo methods. However, assessing uncertainty and summarizing distributions remains challenging for these types of structures. While labelled phylogenetic trees have been extensively studied, relatively less literature exists for unlabelled trees that are increasingly useful, for example when one seeks to summarize samples of trees obtained with different methods, or from different samples and environments, and wishes to assess the stability and generalizability of these summaries. In our paper, we exploit recently proposed distance metrics of unlabelled ranked binary trees and unlabelled ranked genealogies, or trees equipped with branch lengths, to define the Fréchet mean, variance and interquartile sets as summaries of these tree distributions. We provide an efficient combinatorial optimization algorithm for computing the Fréchet mean of a sample or of distributions on unlabelled ranked tree shapes and unlabelled ranked genealogies. We show the applicability of our summary statistics for studying popular tree distributions and for comparing the SARS-CoV-2 evolutionary trees across different locations during the COVID-19 epidemic in 2020. Our current implementations are publicly available at https://github.com/RSamyak/fmatrix. 
    more » « less