skip to main content

Title: Iroki: automatic customization and visualization of phylogenetic trees
Phylogenetic trees are an important analytical tool for evaluating community diversity and evolutionary history. In the case of microorganisms, the decreasing cost of sequencing has enabled researchers to generate ever-larger sequence datasets, which in turn have begun to fill gaps in the evolutionary history of microbial groups. However, phylogenetic analyses of these types of datasets create complex trees that can be challenging to interpret. Scientific inferences made by visual inspection of phylogenetic trees can be simplified and enhanced by customizing various parts of the tree. Yet, manual customization is time-consuming and error prone, and programs designed to assist in batch tree customization often require programming experience or complicated file formats for annotation. Iroki, a user-friendly web interface for tree visualization, addresses these issues by providing automatic customization of large trees based on metadata contained in tab-separated text files. Iroki’s utility for exploring biological and ecological trends in sequencing data was demonstrated through a variety of microbial ecology applications in which trees with hundreds to thousands of leaf nodes were customized according to extensive collections of metadata. The Iroki web application and documentation are available at https://www.iroki.net or through the VIROME portal http://virome.dbi.udel.edu . Iroki’s source code is released under the more » MIT license and is available at https://github.com/mooreryan/iroki . « less
Authors:
; ; ; ;
Award ID(s):
1736030
Publication Date:
NSF-PAR ID:
10159246
Journal Name:
PeerJ
Volume:
8
Page Range or eLocation-ID:
e8584
ISSN:
2167-8359
Sponsoring Org:
National Science Foundation
More Like this
  1. Large systematic revisionary projects incorporating data for hundreds or thousands of taxa require an integrative approach, with a strong biodiversity-informatics core for efficient data management to facilitate research on the group. Our original biodiversity informatics platform, 3i (Internet-accessible Interactive Identification) combined a customized MS Access database backend with ASP-based web interfaces to support revisionary syntheses of several large genera of leafhopers (Hemiptera: Auchenorrhyncha: Cicadellidae). More recently, for our National Science Foundation sponsored project, “GoLife: Collaborative Research: Integrative genealogy, ecology and phenomics of deltocephaline leafhoppers (Hemiptera: Cicadellidae), and their microbial associates”, we selected the new open-source platform TaxonWorks as the cyberinfrastructure. In the scope of the project, the original “3i World Auchenorrhyncha Database” was imported into TaxonWorks. At the present time, TaxonWorks has many tools to automatically import nomenclature, citations, and specimen based collection data. At the time of the initial migration of the 3i database, many of those tools were still under development, and complexity of the data in the database required a custom migration script, which is still probably the most efficient solution for importing datasets with long development history. At the moment, the World Auchenorrhyncha Database comprehensively covers nomenclature of the group and includes data on 70 validmore »families, 6,816 valid genera, 47,064 valid species as well as synonymy and subsequent combinations (Fig. 1). In addition, many taxon records include the original citation, bibliography, type information, etymology, etc. The bibliography of the group includes 37,579 sources, about 1/3 of which are associated with PDF files. Species have distribution records, either derived from individual specimens or as country and state level asserted distribution, as well as biological associations indicating host plants, predators, and parasitoids. Observation matrices in TaxonWorks are designed to handle morphological data associated with taxa or specimens. The matrices may be used to automatically generate interactive identification keys and taxon descriptions. They can also be downloaded to be imported, for example, into Lucid builder, or to perform phylogenetic analysis using an external application. At the moment there are 36 matrices associated with the project. The observation matrix from GoLife project covers 798 taxa by 210 descriptors (most of which are qualitative multi-state morphological descriptors) (Fig. 2). Illustrations are provided for 9,886 taxa and organized in the specialized image matrix and could be used as a pictorial key for determination of species and taxa of a higher rank. For the phylogenetic analysis, a dataset was constructed for 730 terminal taxa and >160,000 nucleotide positions obtained using anchored hybrid enrichment of genomic DNA for a sample of leafhoppers from the subfamily Deltocephalinae and outgroups. The probe kit targets leafhopper genes, as well as some bacterial genes (endosymbionts and plant pathogens transmitted by leafhoppers). The maximum likelihood analyses of concatenated nucleotide and amino acid sequences as well as coalescent gene tree analysis yielded well-resolved phylogenetic trees (Cao et al. 2022). Raw sequence data have been uploaded to the Sequence Read Archive on GenBank. Occurrence and morphological data, as well as diagnostic images, for voucher specimens have been incorporated into TaxonWorks. Data in TaxonWorks could be exported in raw format, get accessed via Application Programming Interface (API), or be shared with external data aggregators like Catalogue of Life, GBIF, iDigBio.« less
  2. Abstract Motivation Cancer is caused by the accumulation of somatic mutations that lead to the formation of distinct populations of cells, called clones. The resulting clonal architecture is the main cause of relapse and resistance to treatment. With decreasing costs in DNA sequencing technology, rich cancer genomics datasets with many spatial sequencing samples are becoming increasingly available, enabling the inference of high-resolution tumor clones and prevalences across different spatial coordinates. While temporal and phylogenetic aspects of tumor evolution, such as clonal evolution over time and clonal response to treatment, are commonly visualized in various clonal evolution diagrams, visual analytics methods that reveal the spatial clonal architecture are missing. Results This article introduces ClonArch, a web-based tool to interactively visualize the phylogenetic tree and spatial distribution of clones in a single tumor mass. ClonArch uses the marching squares algorithm to draw closed boundaries representing the presence of clones in a real or simulated tumor. ClonArch enables researchers to examine the spatial clonal architecture of a subset of relevant mutations at different prevalence thresholds and across multiple phylogenetic trees. In addition to simulated tumors with varying number of biopsies, we demonstrate the use of ClonArch on a hepatocellular carcinoma tumor with ∼280more »sequencing biopsies. ClonArch provides an automated way to interactively examine the spatial clonal architecture of a tumor, facilitating clinical and biological interpretations of the spatial aspects of intra-tumor heterogeneity. Availability and implementation https://github.com/elkebir-group/ClonArch.« less
  3. Abstract

    In the age of next-generation sequencing, the number of loci available for phylogenetic analyses has increased by orders of magnitude. But despite this dramatic increase in the amount of data, some phylogenomic studies have revealed rampant gene-tree discordance that can be caused by many historical processes, such as rapid diversification, gene duplication, or reticulate evolution. We used a target enrichment approach to sample 400 single-copy nuclear genes and estimate the phylogenetic relationships of 13 genera in the lichen-forming family Lobariaceae to address the effect of data type (nucleotides and amino acids) and phylogenetic reconstruction method (concatenation and species tree approaches). Furthermore, we examined datasets for evidence of historical processes, such as rapid diversification and reticulate evolution. We found incongruence associated with sequence data types (nucleotide vs. amino acid sequences) and with different methods of phylogenetic reconstruction (species tree vs. concatenation). The resulting phylogenetic trees provided evidence for rapid and reticulate evolution based on extremely short branches in the backbone of the phylogenies. The observed rapid and reticulate diversifications may explain conflicts among gene trees and the challenges to resolving evolutionary relationships. Based on divergence times, the diversification at the backbone occurred near the Cretaceous-Paleogene (K-Pg) boundary (65 Mya) whichmore »is consistent with other rapid diversifications in the tree of life. Although some phylogenetic relationships within the Lobariaceae family remain with low support, even with our powerful phylogenomic dataset of up to 376 genes, our use of target-capturing data allowed for the novel exploration of the mechanisms underlying phylogenetic and systematic incongruence.

    « less
  4. Abstract Motivation

    A phylogenetic network is a powerful model to represent entangled evolutionary histories with both divergent (speciation) and convergent (e.g. hybridization, reassortment, recombination) evolution. The standard approach to inference of hybridization networks is to (i) reconstruct rooted gene trees and (ii) leverage gene tree discordance for network inference. Recently, we introduced a method called RF-Net for accurate inference of virus reassortment and hybridization networks from input gene trees in the presence of errors commonly found in phylogenetic trees. While RF-Net demonstrated the ability to accurately infer networks with up to four reticulations from erroneous input gene trees, its application was limited by the number of reticulations it could handle in a reasonable amount of time. This limitation is particularly restrictive in the inference of the evolutionary history of segmented RNA viruses such as influenza A virus (IAV), where reassortment is one of the major mechanisms shaping the evolution of these pathogens.

    Results

    Here, we expand the functionality of RF-Net that makes it significantly more applicable in practice. Crucially, we introduce a fast extension to RF-Net, called Fast-RF-Net, that can handle large numbers of reticulations without sacrificing accuracy. In addition, we develop automatic stopping criteria to select the appropriate number of reticulationsmore »heuristically and implement a feature for RF-Net to output error-corrected input gene trees. We then conduct a comprehensive study of the original method and its novel extensions and confirm their efficacy in practice using extensive simulation and empirical IAV evolutionary analyses.

    Availability and implementation

    RF-Net 2 is available at https://github.com/flu-crew/rf-net-2.

    Supplementary information

    Supplementary data are available at Bioinformatics online.

    « less
  5. Abstract Motivation

    Building reliable phylogenies from very large collections of sequences with a limited number of phylogenetically informative sites is challenging because sequencing errors and recurrent/backward mutations interfere with the phylogenetic signal, confounding true evolutionary relationships. Massive global efforts of sequencing genomes and reconstructing the phylogeny of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) strains exemplify these difficulties since there are only hundreds of phylogenetically informative sites but millions of genomes. For such datasets, we set out to develop a method for building the phylogenetic tree of genomic haplotypes consisting of positions harboring common variants to improve the signal-to-noise ratio for more accurate and fast phylogenetic inference of resolvable phylogenetic features.

    Results

    We present the TopHap approach that determines spatiotemporally common haplotypes of common variants and builds their phylogeny at a fraction of the computational time of traditional methods. We develop a bootstrap strategy that resamples genomes spatiotemporally to assess topological robustness. The application of TopHap to build a phylogeny of 68 057 SARS-CoV-2 genomes (68KG) from the first year of the pandemic produced an evolutionary tree of major SARS-CoV-2 haplotypes. This phylogeny is concordant with the mutation tree inferred using the co-occurrence pattern of mutations and recovers key phylogenetic relationships from moremore »traditional analyses. We also evaluated alternative roots of the SARS-CoV-2 phylogeny and found that the earliest sampled genomes in 2019 likely evolved by four mutations of the most recent common ancestor of all SARS-CoV-2 genomes. An application of TopHap to more than 1 million SARS-CoV-2 genomes reconstructed the most comprehensive evolutionary relationships of major variants, which confirmed the 68KG phylogeny and provided evolutionary origins of major and recent variants of concern.

    Availability and implementation

    TopHap is available at https://github.com/SayakaMiura/TopHap.

    Supplementary information

    Supplementary data are available at Bioinformatics online.

    « less