skip to main content


Title: A new variance ratio metric to detect the timescale of compensatory dynamics
Abstract

Understanding the mechanisms governing ecological stability—why a property such as primary productivity is stable in some communities and variable in others—has long been a focus of ecology. Compensatory dynamics, in which anti‐synchronous fluctuations between populations buffer against fluctuations at the community level, are a key theoretical mechanism of stability. Classically, compensatory dynamics have been quantified using a variance ratio approach that compares the ratio between community variance and aggregate population variance, such that a lower ratio indicates compensation and a higher ratio indicates synchrony among species fluctuations. However, population dynamics may be influenced by different drivers that operate on different timescales, and evidence from aquatic systems indicates that communities can be compensatory on some timescales and synchronous on others. The variance ratio and related metrics cannot reflect this timescale specificity, yet have remained popular, especially in terrestrial systems. Here, we develop a timescale‐specific variance ratio approach that formally decomposes the classical variance ratio according to the timescales of distinct contributions. The approach is implemented in a new R package, called tsvr, that accompanies this paper. We apply our approach to a long‐term, multisite grassland community dataset. Our approach demonstrates that the degree of compensation vs. synchrony in community dynamics can vary by timescale. Across sites, population variability was typically greater over longer compared to shorter timescales. At some sites, minimal timescale specificity in compensatory dynamics translated this pattern of population variability into a similar pattern of greater community variability on longer compared to shorter timescales. But at other sites, differentially stronger compensatory dynamics at longer compared to shorter timescales produced lower‐than‐expected community variability on longer timescales. Within every site, there were plots that exhibited shifts in the strength of compensation between timescales. Our results highlight that compensatory vs. synchronous dynamics are intrinsically timescale‐dependent concepts, and our timescale‐specific variance ratio provides a metric to quantify timescale specificity and relate it back to the classic variance ratio.

 
more » « less
Award ID(s):
1929393 1714195 1831937
NSF-PAR ID:
10458038
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Ecosphere
Volume:
11
Issue:
5
ISSN:
2150-8925
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Phenology has long been hypothesized as an avenue for niche partitioning or interspecific facilitation, both promoting species coexistence. Tropical plant communities exhibit striking diversity in reproductive phenology, but many are also noted for large synchronous reproductive events. Here we study whether the phenology of seed fall in such communities is nonrandom, the temporal scales of phenological patterns, and ecological factors that drive reproductive phenology. We applied multivariate wavelet analysis to test for phenological synchrony versus compensatory dynamics (i.e., antisynchronous patterns where one species' decline is compensated by the rise of another) among species and across temporal scales. We used data from long‐term seed rain monitoring of hyperdiverse plant communities in the western Amazon. We found significant synchronous whole‐community phenology at multiple timescales, consistent with shared environmental responses or positive interactions among species. We also observed both compensatory and synchronous phenology within groups of species (confamilials) likely to share traits and seed dispersal mechanisms. Wind‐dispersed species exhibited significant synchrony at ~6‐month scales, suggesting these species might share phenological niches to match the seasonality of wind. Our results suggest that community phenology is shaped by shared environmental responses but that the diversity of tropical plant phenology may partly result from temporal niche partitioning. The scale‐specificity and time‐localized nature of community phenology patterns highlights the importance of multiple and shifting drivers of phenology.

     
    more » « less
  2. Abstract

    Dissolved organic carbon (DOC) is a key component of aquatic ecosystems with complex effects on ecosystem function. While long‐term increases in DOC termed “brownification” have received considerable attention, directional trends typically account for a minority of variance. DOC concentrations also fluctuate on seasonal to multiannual timescales, but the causes of such variations are less understood. We used a wavelet‐based approach to study timescale‐specific, spatially synchronous fluctuations in DOC across 49 lakes in the Adirondacks, New York, USA. DOC varies synchronously among lakes at within‐season, annual, and interannual timescales, but relationships with external drivers and internal processes indicated by lake chemistry differed across timescales. External drivers explained 78% of spatial DOC synchrony at the annual time scale. Beyond positive trends related to regional recovery from acidification, variability in DOC is a consequence of fluctuations at several timescales that are common among Adirondack lakes in precipitation, solar radiation, and internal chemical concentrations.

     
    more » « less
  3. Abstract

    Spatial synchrony is defined by related fluctuations through time in population abundances measured at different locations. The degree of relatedness typically declines with increasing distance between sampling locations. Standard approaches for assessing synchrony assume isotropy in space and uniformity across timescales of analysis, but it is now known that spatial variability and timescale structure in population dynamics are common features. We tested for spatial and timescale structure in the patterns of synchrony of freshwater plankton in Kentucky Lake, U.S.A. We also evaluated whether different mechanisms may drive synchrony and its spatial structure on different timescales. Using wavelet techniques and matrix regression, we analyzed phytoplankton biomass and abundances of seven zooplankton taxa at 16 locations sampled from 1990 to 2015. We found that zooplankton abundances and phytoplankton biomass exhibited synchrony at multiple timescales. Timescale structure in the potential mechanisms of synchrony was revealed primarily through networks of relationships among zooplankton taxa, which differed by timescale. We found substantial interspecific variability in geographic structures of synchrony and their causes: all mechanisms we considered strongly explained geographic structure in synchrony for at least one species, while Euclidean distance between sampling locations was generally less well supported than more mechanistic explanations. Geographic structure in synchrony and its underlying mechanisms also depended on timescale for a minority of the taxa tested. Overall, our results show substantial and complex but interpretable variation in structures of synchrony across three variables: space, timescale, and taxon. It seems likely these aspects of synchrony are important general features of freshwater systems.

     
    more » « less
  4. Abstract

    Synchronous dynamics (fluctuations that occur in unison) are universal phenomena with widespread implications for ecological stability. Synchronous dynamics can amplify the destabilizing effect of environmental variability on ecosystem functions such as productivity, whereas the inverse, compensatory dynamics, can stabilize function. Here we combine simulation and empirical analyses to elucidate mechanisms that underlie patterns of synchronous versus compensatory dynamics. In both simulated and empirical communities, we show that synchronous and compensatory dynamics are not mutually exclusive but instead can vary by timescale. Our simulations identify multiple mechanisms that can generate timescale‐specific patterns, including different environmental drivers, diverse life histories, dispersal, and non‐stationary dynamics. We find that traditional metrics for quantifying synchronous dynamics are often biased toward long‐term drivers and may miss the importance of short‐term drivers. Our findings indicate key mechanisms to consider when assessing synchronous versus compensatory dynamics and our approach provides a pathway for disentangling these dynamics in natural systems.

     
    more » « less
  5. Abstract

    Competition from invasive species is an increasing threat to biodiversity. In Southern California, the western gray squirrel (Sciurus griseus, WGS) is facing competition from the fox squirrel (Sciurus niger, FS), an invasive congener.

    We used spectral methods to analyze 140 consecutive monthly censuses of WGS and FS within a 11.3 ha section of the California Botanic Garden. Variation in the numbers for both species and their synchrony was distributed across long timescales (>15 months).

    After filtering out annual changes, concurrent mean monthly temperatures from nearby Ontario Airport yielded a spectrum with a large semi‐annual peak and significant spectral power at long timescales (>28 months). The cospectrum between WGS numbers and temperature revealed a significant negative correlation at long timescales (>35 months). Cospectra also revealed significant negative correlations with temperature at a six‐month timescale for both WGS and FS.

    Simulations from a model of two competing species indicate that the risk of extinction for the weaker competitor increases quickly as environmental noise shifts from short to long timescales.

    We analyzed the timescales of fluctuations in detrended mean annual temperatures for the time period 1915–2014 from 1218 locations across the continental USA. In the last two decades, significant shifts from short to long timescales have occurred, from <3 years to 4–6 years.

    Our results indicate that (i) population fluctuations in co‐occurring native and invasive tree squirrels are synchronous, occur over long timescales, and may be driven by fluctuations in environmental conditions; (ii) long timescale population fluctuations increase the risk of extinction in competing species, especially for the inferior competitor; and (iii) the timescales of interannual environmental fluctuations may be increasing from recent historical values. These results have broad implications for the impact of climate change on the maintenance of biodiversity.

     
    more » « less