skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Undergraduate Research on Friction Stir Welding of Copper-Aluminum Join
The need for joining dissimilar materials is increasing rapidly in manufacturing industries. Therefore, a successful weld of dissimilar metals by Friction Stir Welding (FSW) process becomes a topic of interest for many investigators. FSW research topics have been used for Manufacturing Engineering students at Virginia State University as undergraduate research projects. The purpose of this study was to investigate intermetallic characteristics between aluminum and copper at the transition zone in the FSW process. The effects of process parameters on heat affected zone (HAZ) have been examined to find the optimal tool rotational speed, axial force, and transverse speed. A metallographic study was conducted to investigate the quality of intermetallic bonding at the interfaces. It was observed that using optimized process parameters for experimental setup resulted in a very good quality of the welds.  more » « less
Award ID(s):
1719504
PAR ID:
10159455
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
American Society for Engineering Education
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Process optimization for directed-energy-deposition, an industrial laser-based additive manufacturing technique, is a time-intensive endeavor for manufacturers. Herein we investigate the use of a modified analytical process-model based on powder-bed-fusion techniques, to predict quality build parameters by incorporating the effects of three key parameters: laser-power, scanning-speed, and powder flowrate. Titanium alloy (Ti6Al4V) tracks of varying parameters were built, studied, and used to predict parameters for quality builds used at different parameters. The model agreed well with experimental build quality at powder flowrates less than 6.5g/min, whereas, higher flowrates created significant unmelted-particle regions, despite optimal parameter predictions. Processing of multi-layer bulk samples revealed that parameters in the optimal range account for relative densities >99%, indicating quality bulk processing parameters. Our results indicate that process modeling with the incorporation of powder feedrate as a key parameter is possible using a commercial laser-based additive manufacturing system. 
    more » « less
  2. This study demonstrates that the thickness of the target and its backing condition have a powerful effect on the development of a wave structure in impact welds. Conventional theories and experiments related to impact welds show that the impact angle and speed of the flyer have a controlling influence on the development of wave structure and jetting. These results imply that control of reflected stress waves can be effectively used to optimize welding conditions and expand the range of acceptable collision angle and speed for good welding. Impact welding and laser impact welding are a class of processes that can create solid-state welds, permitting the formation of strong and tough welds without the creation of significant heat affected zones, and can avoid the gross formation of intermetallic in dissimilar metal pairs. This study examined small-scale impact using a consistent launch condition for a 127 µm commercially pure titanium flyer impacted against commercially pure copper target with thicknesses between 127 µm and 1000 µm. Steel and acrylic backing layers were placed behind the target to change wave reflection characteristics. The launch conditions produced normal collision at about 900 m/s at the weld center, with decreasing impact speed and increasing angle moving toward the outer perimeter. The target thickness had a large effect on wave morphology, with the wave amplitude increasing with target thickness in both cases, peaking when target thickness is about twice flyer thickness, and then falling. The acrylic backing showed a consistently smaller unwelded central zone, indicating that impact welding is possible at a smaller angle in that case. Strength was measured in destructive tensile testing. Failure was controlled by the breakdown of the weaker of the two base metals over all thicknesses and backings. This demonstrates that laser impact welding is a robust method for joining dissimilar metals over a range of thicknesses. 
    more » « less
  3. Abstract Ultrasonic additive manufacturing (UAM) is a solid state manufacturing process capable of producing near-net-shape metal parts. Recent studies have shown the promise of UAM welding of steels. However, the effect of weld parameters on the weld quality of UAM steel is unclear. A design of experiments study based on a Taguchi L16 design array was conducted to investigate the influence of parameters including baseplate temperature, amplitude, welding speed, and normal force on the interfacial temperature and shear strength of UAM welding of carbon steel 4130. Analysis of variance (ANOVA) and main effects analyses were performed to determine the effect of each parameter. A Pearson correlation test was conducted to find the relationship between interfacial temperature and shear strength. These analyses indicate that a maximum shear strength of 392.8 MPa can be achieved by using a baseplate temperature of 400°F (204.4°C), amplitude of 31.5 μm, welding speed of 40 in/min (16.93 mm/s), and normal force of 6000 N. The Pearson correlation coefficient is calculated as 0.227, which indicates no significant correlation between interfacial temperature and shear strength over the range tested. 
    more » « less
  4. null (Ed.)
    316L stainless steel (SS) to Al12Si aluminum alloy structures were processed, tailoring the compositionally graded interface on a SS 316 substrate using a directed energy deposition (DED)-based additive manufacturing (AM) process. Applying such a compositionally graded transition on bimetallic materials, especially joining two dissimilar metals, could avoid the mechanical property mismatch. This study's objective was to understand the processing parameters that influence the properties of AM processed SS 316L to Al12Si bimetallic structures. Two different approaches fabricated these bimetallic structures. The results showed no visible defects on the as-fabricated samples using 4 layers of Al-rich mixed composition as the transition section. The microstructural characterization showed a unique morphology in each section. Both cooling rate and compositional variations caused microstructural variation. FeAl, Fe2Al5, and FeAl3 intermetallic phases were formed at the compositionally graded transition section. After stress relief heat-treatment of SS 316L/Al12Si bimetallic samples, diffused intermetallic phases were seen at the compositionally graded transition. At the interface, as processed, bimetallic structures had a microhardness value of 834.2 ± 107.1 HV0.1, which is a result of the FeAl3 phase at the compositionally graded transition area. After heat-treatment, the microhardness value reduced to 578.7 ± 154.1 HV0.1 due to more Fe dominated FexAly phase formation. The compression test results showed that the non-HT and HT SS 316L/Al12Si bimetallic structures had a similar maximum compressive strength of 299.4 ± 22.1 MPa and 270.1 ± 27.1 MPa, respectively. 
    more » « less
  5. This study aims to investigate surface roughness, microstructure, and mechanical properties of overhead thin-wall structures of stainless steel(SS316L) fabricated by cold metal transfer (CMT)-based wire + arc additive manufacturing (WAAM). In the first stage, single-layer bead experiments were carried out in flat and overhead positions utilizing Box-Behnken experimental design with a range of process parameters (i.e., wire feed rate, travel speed, and weave amplitude). To study the effect of individual process parameters on the bead geometry and identify a process window, analysis of variance(ANOVA) is performed using the bead cross-section measurement data. For single layer bead experiments in flat and overhead position, out of all process parameters, the weave amplitude is the most significant parameter on bead width, whereas travel speed is most significant parameter for bead height. Based on single-layer bead experiments, process parameters for thin wall deposition were identified. In the second stage, two thin-walls were deposited with wire feed rates of 1000 and 1500 mm/min in the overhead position. The surface roughness was measured using cloud point data acquired from the coordinate measuring machine(CMM). The deposited structure with the wire feed rate of 1500 mm/min resulted in better surface quality. It was also observed that, microstructure was composed of austenite and dendritic delta ferrite. The microstructure changed as the deposition height increased. The average microhardness value was measured 183 HV and 187.4 HV for the overhead structures. Average tensile properties of the SS316L overhead structures were comparable to that of SS316L fabricated by other WAAM processes. 
    more » « less