skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Challenges and Status on Design and Computation for Emerging Additive Manufacturing Technologies
The revolution of additive manufacturing (AM) has led to many opportunities in fabricating complex and novel products. The increase of printable materials and the emergence of novel fabrication processes continuously expand the possibility of engineering systems in which product components are no longer limited to be single material, single scale, or single function. In fact, a paradigm shift is taking place in industry from geometry-centered usage to supporting functional demands. Consequently, engineers are expected to resolve a wide range of complex and difficult problems related to functional design. Although a higher degree of design freedom beyond geometry has been enabled by AM, there are only very few computational design approaches in this new AM-enabled domain to design objects with tailored properties and functions. The objectives of this review paper are to provide an overview of recent additive manufacturing developments and current computer-aided design methodologies that can be applied to multimaterial, multiscale, multiform, and multifunctional AM technologies. The difficulties encountered in the computational design approaches are summarized and the future development needs are emphasized. In the paper, some present applications and future trends related to additive manufacturing technologies are also discussed.  more » « less
Award ID(s):
1663663 1151191
PAR ID:
10159512
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Journal of Computing and Information Science in Engineering
Volume:
19
Issue:
2
ISSN:
1530-9827
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Laser based additive manufacturing (AM) methods, that incorporate a high-density laser to sinter, melt, or solidify the desired material, have developed into an ideal technology for the design and fabrication of robust and highly customizable functional devices which aim to address key challenges in the aerospace, biomedical, and defense sectors. Recent advancements in powder bed fusion (PBF) approaches, such as selective laser sintering (SLS) and melting (SLM) have significantly improved the range of printable materials, minimum feature size, and microstructure evolution, endowing precise control over the physical properties of the final printed part. Furthermore, studies on novel photoresist materials and laser scanning strategies used during multiphoton lithography (MPL) approaches indicated that nanoscale spatial resolution could be achieved, allowing for the design of intricate biomedical implants or smooth optical devices. This chapter focuses on an extensive review of current research being conducted on laser-based AM technologies highlighting the current compatible materials and applications of SLS, SLM, and MLP printed functional devices. Future perspectives and notable challenges of the laser-based AM technologies are discussed in detail with the purpose of identifying critical research areas for each methodology. 
    more » « less
  2. Abstract This review highlights recent progress in additive manufacturing (AM) techniques for polymer composites reinforced with nanoparticles, short fibers, and continuous fibers. It also explores the integration of functional resins and fibers to enable advanced capabilities such as shape morphing, enhanced electrical and thermal conductivity, and self-healing behavior. Building on these advances, the review examines computational design strategies that optimize material distribution and fiber orientation. Representative approaches range from density-based methods to emerging level-set topology optimization frameworks, with objectives evolving from improving mechanical performance to addressing complex multi-physics functional requirements. The review also identifies emerging opportunities, including the need for technological innovations to further improve mechanical properties and enable adaptable multifunctionality. Further advances in theoretical modeling and integrated design-printing workflows are also discussed. By synthesizing these developments, this review aims to foster interdisciplinary collaborations and accelerate innovation in AM-enabled composite materials across a wide range of applications. 
    more » « less
  3. Additive Manufacturing (AM), also known as 3D printing, has been highlighted as a complementary method to the traditional (subtractive and formative) manufacturing. This mainly results from its distinctive characteristics to directly produce complex shapes and assemblies without an assembly process. With these aspects, AM has affected the way products are designed and formed, which leads to an exclusive research area, known as Design for AM (DfAM). As a step towards addressing DfAM, this paper reviews the literature on re-designing an original model into assemblies produced in AM, named as Part Decomposition (PD). Although PD has received less attention in DfAM compared with Part Consolidation (PC) that is re-designing assemblies into a consolidated single part, PD has been studied with various motives and challenges for AM. To investigate the research trend in PD, 37 main publications are categorized under five motives including printability, productivity, functionality, artistry and flexibility. Additionally, from technical and methodological aspects, relevant studies are organized into decomposition issues (automatic, semi-automatic and manual decompositions), buildup issues (orientation decision for single- and multi-part and packing problem), and assembly issues (connection design and assembly process planning). As witnessed in this comprehensive review, the concept of PD leaves further research challenges spanning several disciplines. Along this line, we further elaborate future research directions of PD under three main categories: (1) enhancing the AM productivity for mass customization; (2) developing novel decomposition methods and guidelines; and (3) applying conventional design methodologies to PD. 
    more » « less
  4. We present a scrutiny on the state of the art and applicability of predictive methods for additive manufacturing (AM) of metals, alloys, and compositionally complex metallic materials, to provide insights from the computational models for AM process optimization. Our work emphasizes the importance of manufacturing parameters on the thermal profiles evinced during processing, and the fundamental insights offered by the models used to simulate metal AM mechanisms. We discuss the methods and assumptions necessary for an educated tradeoff between the efficacy and accuracy of the computational approaches that incorporate multi-physics required to mimic the associated fluid flow phenomena as well as the resulting microstructures. Finally, the current challenges in the existing approaches are summarized and future scopes identified. 
    more » « less
  5. Additive manufacturing (AM) is a disruptive technology with a unique capability in fabricating parts with complex geometry and fixing broken supply chains. However, many AM techniques are complicated with their processing features due to complex heating and cooling cycles with the melting of feedstock materials. Therefore, it is quite challenging to directly apply the materials design and processing optimization method used for conventional manufacturing to AM techniques. In this viewpoint paper, we discuss some of the ongoing efforts of high-throughput (HT) experimentation, which can be used for materials development and processing design. Particularly, we focus on the beam- and powder-based AM techniques since these methods have demonstrated success in HT experimentation. In addition, we propose new opportunities to apply AM techniques as the materials informatic tools contributing to materials genome. 
    more » « less