skip to main content


Title: Influence of the pendant arm in deoxydehydration catalyzed by dioxomolybdenum complexes supported by amine bisphenolate ligands
Dioxomolybdenum complexes supported by aminebisphenolate ligands were evaluated for their potential in catalyzing the deoxydehydration (DODH) reaction to establish structure–activity relationships. The nature of the pendant arm in these aminebisphenolate ligands was found to be crucial in determining reactivity in the deoxydehydration of styrene glycol (1-phenyl-1,2-ethanediol) to styrene. Pendant arms bearing strongly coordinating N -based groups such as pyridyl or amino substituents were found to hinder activity while those bearing non-coordinating pendant arms (benzyl) or even weakly coordinating groups (an ether) resulted in up to 6 fold enhancement in catalytic activity. A dioxomolybdenum complex featuring an aminemonophenolate ligand derived from the aminebisphenolate skeleton also resulted in similar yield enhancements. Although aromatic solvents were found to be ideal for performing these catalytic reactions, polar solvents such as N , N -dimethylformamide (DMF) and N , N ′-dimethylpropyleneurea (DMPU) were also suitable. The catalyst was found to maintain its structural integrity under the optimized conditions and could be recycled for a second catalytic run without loss of activity. With the activated substrate meso -hydrobenzoin, trans -stilbene was obtained in a 56% yield at 220 °C along with benzaldehyde (71%) suggesting that the diol is a competing reductant under these conditions.  more » « less
Award ID(s):
1800605
NSF-PAR ID:
10159652
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
New Journal of Chemistry
ISSN:
1144-0546
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Heterogeneously catalyzed deoxydehydration (DODH) ordinarily occurs over relatively costly oxide supported ReO x sites and is an effective process for the removal of vicinal OH groups that are common in biomass-derived chemicals. Here, through first-principles calculations, we investigate the DODH of 1,4-anhydroerythritol over anatase TiO 2 (101)-supported ReO x and MoO x . The atomistic structures of ReO x and MoO x under typical reaction conditions were identified with constrained thermodynamics calculations as ReO 2 (2O)/6H–TiO 2 and MoO(2O)/3H–TiO 2 , respectively. The calculated energy profile and developed microkinetic reaction model suggest that both ReO 2 (2O)/6H–TiO 2 and MoO(2O)/3H–TiO 2 exhibit a relatively low DODH activity at 413 K. However, at higher temperatures such as 473 K, MoO(2O)/TiO 2 (101) was found to exhibit a reasonably high catalytic activity similar to ReO 2 (2O)/6H–TiO 2 , consistent with a recent experimental study. Mechanistically, the first O–H bond cleavage of 1,4-anhydroerythritol and the dihydrofuran extrusion were found to be the rate-controlling steps for the reaction over ReO 2 (2O)/6H–TiO 2 and MoO(2O)/3H–TiO 2 , respectively. Thus, this study clarifies the mechanism of the DODH over oxide-supported catalysts and provides meaningful insight into the design of low-cost DODH catalysts. 
    more » « less
  2. Pellegrini, M ; Saccani, C ; Guzzini, A (Ed.)

    Twenty novel Mn, Fe, and Cu complexes of ethylene cross-bridged tetraazamacrocycles with potentially copolymerizable allyl and benzyl pendant arms were synthesized and characterized. Multiple X-ray crystal structures demonstrate the cis-folded pseudo-octahedral geometry forced by the rigidifying ethylene cross-bridge and show that two cis coordination cites are available for interaction with substrate and oxidant. The Cu complexes were used to determine kinetic stability under harsh acidic and high-temperature conditions, which revealed that the cyclam-based ligands provide superior stabilization with half-lives of many minutes or even hours in 5 M HCl at 50–90 °C. Cyclic voltammetry studies of the Fe and Mn complexes reveal reversible redox processes indicating stabilization of Fe2+/Fe3+ and Mn2+/Mn3+/Mn4+ oxidation states, indicating the likelihood of catalytic oxidation for these complexes. Finally, dye-bleaching experiments with methylene blue, methyl orange, and rhodamine B demonstrate efficient catalytic decolorization and allow selection of the most successful monomeric catalysts for copolymerization to produce future heterogeneous water purification materials.

     
    more » « less
  3. Abstract

    A series of various solvents and additives were tested in enantioselective hydroamination/cyclization reactions of aminoalkenes catalyzed by a binaphtholate yttrium catalyst. The functional group tolerance of the catalyst and the influence on the reaction rate and enantioselectivity was studied. Some weakly coordinating polar solvents, such as Et2O, MTBE, and chlorobenzene led to slightly increased reaction rates compared to the less polar solvent benzene, presumably due to a better stabilization of the polar transition state. Stronger binding solvents and additives, such as THF, DMAP, pyrrolidine,n‐propylamine, and 1‐phenylethylamine, decrease the reaction rate and diminish the enantioselectivity of the hydroamination product. Some additives, such as THF, Et2O, MTBE, chloro‐ and bromobenzene, as well as (+)‐sparteine resulted in slightly higher enantioselectivities in the cyclization of the model substrateC‐(1‐allylcyclohexyl)methylamine, although this observation was not generally true for other aminoalkene substrates. The reaction rates and enantioselectivities were depressed in the presence of (−)‐sparteine using the (R)‐binaphtholate‐ligated catalyst. In case ofC‐(1‐allylcyclohexyl)methylamine, the enantioselectivity was switched from 76% ee favoring the (S)‐enantiomer of the hydroamination product when using (+)‐sparteine to 22% ee in favor of the (R)‐enantiomer when (−)‐sparteine was used. The rates of cyclization of aminoalkenes and the resulting enantioselectivities significantly depend on substrate concentration with the highest rate (13.6 h−1) and enantioselectivity (68% ee) observed in dilute conditions (0.05 M) compared to a concentrated solution (0.5 M, 5.0 h−1, 35% ee) for 2,2‐dimethylpent‐4‐enylamine. These observations indicate that the reaction mechanism is shifted in favor of a slower, less enantioselective catalytic cycle involving a higher coordinate species when higher substrate concentrations or stronger binding additives are present.

    magnified image

     
    more » « less
  4. null (Ed.)
    Metal nanoparticles (NPs) tethered by synthetic polymers are of broad interest for self-assembly, nanomedicine and catalysis. The binding motifs in polymer ligands usually as the end functional groups of polymers are mostly limited to thiolates. Since the binding motif only represents a tiny fraction of many repeating units in polymers, its importance is often ignored. We herein report the uniqueness of polymeric N-heterocyclic carbene (NHC) ligands in providing oxidative stability and promoting the catalytic activity of noble metal NPs. Two “grafting to” methods were developed for polymer NHCs for pre-synthesized metal NPs in various solvents and with different sizes. Remarkably, imidazolium-terminated polystyrene can modify gold NPs (AuNPs) within 2 min while reaching a similar grafting density to polystyrene-thiol (SH) requiring 6 h modification. We demonstrate that polymer NHCs are extremely stable at high temperature in air. Interestingly, the binding motifs of polymer ligands dominate the catalytic activity of metal NPs. Polymer NHC modified metal NPs showed improved activity regardless of the surface crowdedness. In the case of AuNPs, AuNPs modified with polystyrene NHCs are approximately 5.2 times more active than citrate-capped ones and 22 times more active than those modified with polystyrene thiolates. In view of ligand-controlled catalytic properties of metal NPs, our results illustrate the importance of binding motifs that has been overlooked in the past. 
    more » « less
  5. Abstract

    A synthetic method for the palladium‐catalyzed cyanation of aryl boronic acids using bench stable and non‐toxicN‐cyanosuccinimide has been developed. High‐throughput experimentation facilitated the screen of 90 different ligands and the resultant statistical data analysis identified that ligand σ‐donation, π‐acidity and sterics are key drivers that govern yield. Categorization into three ligand groups – monophosphines, bisphosphines and miscellaneous – was performed before the analysis. For the monophosphines, the yield of the reaction increases for strong σ‐donating, weak π‐accepting ligands, with flexible pendant substituents. For the bisphosphines, the yield predominantly correlates with ligand lability. The applicability of the designed reaction to a wider substrate scope was investigated, showing good functional group tolerance in particular with boronic acids bearing electron‐withdrawing substituents. This work outlines the development of a novel reaction, coupled with a fast and efficient workflow to gain understanding of the optimal ligand properties for the design of improved palladium cross‐coupling catalysts.

     
    more » « less