Community detection in graphs can be solved via spectral methods or posterior inference under certain probabilistic graphical models. Focusing on random graph families such as the stochastic block model, recent research has unified both approaches and identified both statistical and computational detection thresholds in terms of the signal-to-noise ratio. By recasting community detection as a node-wise classification problem on graphs, we can also study it from a learning perspective. We present a novel family of Graph Neural Networks (GNNs) for solving community detection problems in a supervised learning setting. We show that, in a data-driven manner and without access to the underlying generative models, they can match or even surpass the performance of the belief propagation algorithm on binary and multiclass stochastic block models, which is believed to reach the computational threshold in these cases. In particular, we propose to augment GNNs with the non-backtracking operator defined on the line graph of edge adjacencies. The GNNs are achieved good performance on real-world datasets. In addition, we perform the first analysis of the optimization landscape of using (linear) GNNs to solve community detection problems, demonstrating that under certain simplifications and assumptions, the loss value at any local minimum is close to the loss value at the global minimum/minima.
more »
« less
Supervised Community Detection with Line Graph Neural Networks
Community detection in graphs can be solved via spectral methods or posterior inference under certain probabilistic graphical models. Focusing on random graph families such as the stochastic block model, recent research has unified both approaches and identified both statistical and computational detection thresholds in terms of the signal-to-noise ratio. By recasting community detection as a node-wise classification problem on graphs, we can also study it from a learning perspective. We present a novel family of Graph Neural Networks (GNNs) for solving community detection problems in a supervised learning setting. We show that, in a data-driven manner and without access to the underlying generative models, they can match or even surpass the performance of the belief propagation algorithm on binary and multiclass stochastic block models, which is believed to reach the computational threshold in these cases. In particular, we propose to augment GNNs with the non-backtracking operator defined on the line graph of edge adjacencies. The GNNs are achieved good performance on real-world datasets. In addition, we perform the first analysis of the optimization landscape of using (linear) GNNs to solve community detection problems, demonstrating that under certain simplifications and assumptions, the loss value at any local minimum is close to the loss value at the global minimum/minima.
more »
« less
- Award ID(s):
- 1845360
- PAR ID:
- 10159657
- Date Published:
- Journal Name:
- International conference on learning representations
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Community detection in graphs, also known as graph partitioning, is a well-studied NP-hard problem. Various heuristic approaches have been adopted to tackle this problem in polynomial time. One such approach, as outlined in the IEEE HPEC Graph Challenge, is Bayesian statistics-based stochastic block partitioning. This method delivers high-quality partitions in sub-quadratic runtime, but it fails to scale to very large graphs. In this paper, we present sampling as an avenue for speeding up the algorithm on large graphs. We first show that existing sampling techniques can preserve a graph’s community structure. We then show that sampling for stochastic block partitioning can be used to produce a speedup of between 2.18× and 7.26× for graph sizes between 5, 000 and 50, 000 vertices without a significant loss in the accuracy of community detection.more » « less
-
null (Ed.)From the perspective of expressive power, this work compares multi-layer Graph Neural Networks (GNNs) with a simplified alternative that we call Graph-Augmented Multi-Layer Perceptrons (GA-MLPs), which first augments node features with certain multi-hop operators on the graph and then applies an MLP in a node-wise fashion. From the perspective of graph isomorphism testing, we show both theoretically and numerically that GA-MLPs with suitable operators can distinguish almost all non-isomorphic graphs, just like the Weifeiler-Lehman (WL) test. However, by viewing them as node-level functions and examining the equivalence classes they induce on rooted graphs, we prove a separation in expressive power between GA-MLPs and GNNs that grows exponentially in depth. In particular, unlike GNNs, GA-MLPs are unable to count the number of attributed walks. We also demonstrate via community detection experiments that GA-MLPs can be limited by their choice of operator family, as compared to GNNs with higher flexibility in learning.more » « less
-
Graph neural networks (GNNs) have become increasingly popular for classification tasks on graph-structured data. Yet, the interplay between graph topology and feature evolution in GNNs is not well understood. In this paper, we focus on node- wise classification, illustrated with community detection on stochastic block model graphs, and explore the feature evolution through the lens of the “Neural Collapse” (NC) phenomenon. When training instance-wise deep classifiers (e.g. for image classification) beyond the zero training error point, NC demonstrates a reduction in the deepest features’ within-class variability and an increased alignment of their class means to certain symmetric structures. We start with an empirical study that shows that a decrease in within-class variability is also prevalent in the node-wise classification setting, however, not to the extent observed in the instance-wise case. Then, we theoretically study this distinction. Specifically, we show that even an “optimistic” mathematical model requires that the graphs obey a strict structural condition in order to possess a minimizer with exact collapse. Interestingly, this condition is viable also for heterophilic graphs and relates to recent empirical studies on settings with improved GNNs’ generalization. Furthermore, by studying the gradient dynamics of the theoretical model, we provide reasoning for the partial collapse observed empirically. Finally, we present a study on the evolution of within- and between-class feature variability across layers of a well-trained GNN and contrast the behavior with spectral methods.more » « less
-
null (Ed.)From the perspective of expressive power, this work compares multi-layer Graph Neural Networks (GNNs) with a simplified alternative thatwe call Graph-Augmented Multi-Layer Perceptrons (GA-MLPs), which first augments node features with certain multi-hop operators on the graph and then applies an MLP in a node-wise fashion. From the perspective of graph isomorphism testing,we showboth theoretically and numerically that GA-MLPs with suitable operators can distinguish almost all non-isomorphic graphs, just like the Weifeiler-Lehman (WL) test. However, by viewing them as node-level functions and examining the equivalence classes they induce on rooted graphs, we prove a separation in expressive power between GA-MLPs and GNNs that grows exponentially in depth. In particular, unlike GNNs, GA-MLPs are unable to count the number of attributed walks. We also demonstrate via community detection experiments that GA-MLPs can be limited by their choice of operator family, as compared to GNNs with higher flexibility in learning.more » « less
An official website of the United States government

