skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Systematic study of shockley-read-hall and radiative recombination in GaN on Al 2 O 3 , freestanding GaN, and GaN on Si
Award ID(s):
1652871
PAR ID:
10160076
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Journal of Physics: Photonics
Volume:
2
Issue:
3
ISSN:
2515-7647
Page Range / eLocation ID:
Article No. 035003
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. GaN-on-GaN vertical diode is a promising device for next-generation power electronics. Its breakdown voltage (BV) is limited by edge termination designs such as guard rings. The design space of guard rings is huge and it is difficult to optimize manually. In this paper, we propose an effective inverse design strategy to co-optimize BV and (V F Q) −1 , where BV, V F , and Q are the breakdown voltage, forward voltage, and reserve capacitive charge of the diode, respectively. Using rapid Technology Computer-Aided-Design (TCAD) simulations, neural network (NN), and Pareto front generation, a GaN-on-GaN diode is optimized within 24 hours. We can obtain structures with 200V higher BV at medium (V F Q) −1 or find a nearly ideal BV structure with 25% higher BV 2 /R on compared to the best randomly generated TCAD data. 
    more » « less