skip to main content

Title: The Fast-Evolving phy-2 Gene Modulates Sexual Development in Response to Light in the Model Fungus Neurospora crassa
ABSTRACT Rapid responses to changes in incident light are critical to the guidance of behavior and development in most species. Phytochrome light receptors in particular play key roles in bacterial physiology and plant development, but their functions and regulation are less well understood in fungi. Nevertheless, genome-wide expression measurements provide key information that can guide experiments that reveal how genes respond to environmental signals and clarify their role in development. We performed functional genomic and phenotypic analyses of the two phytochromes in Neurospora crassa , a fungal model adapted to a postfire environment that experiences dramatically variable light conditions. Expression of phy-1 and phy-2 was low in early sexual development and in the case of phy-2 increased in late sexual development. Under light stimulation, strains with the phytochromes deleted exhibited increased expression of sexual development-related genes. Moreover, under red light, the phy-2 knockout strain commenced sexual development early. In the evolution of phytochromes within ascomycetes, at least two duplications have occurred, and the faster-evolving phy-2 gene has frequently been lost. Additionally, the three key cysteine sites that are critical for bacterial and plant phytochrome function are not conserved within fungal phy-2 homologs. Through the action of phytochromes, transitions between asexual more » and sexual reproduction are modulated by light level and light quality, presumably as an adaptation for fast asexual growth and initiation of sexual reproduction of N. crassa in exposed postfire ecosystems. IMPORTANCE Environmental signals, including light, play critical roles in regulating fungal growth and pathogenicity, and balance of asexual and sexual reproduction is critical in fungal pathogens’ incidence, virulence, and distribution. Red light sensing by phytochromes is well known to play critical roles in bacterial physiology and plant development. Homologs of phytochromes were first discovered in the fungal model Neurospora crassa and then subsequently in diverse other fungi, including many plant pathogens. Our study investigated the evolution of red light sensors in ascomycetes and confirmed—using the model fungus Neurospora crassa —their roles in modulating the asexual-sexual reproduction balance in fungi. Our findings also provide a key insight into one of the most poorly understood aspects of fungal biology, suggesting that further study of the function of phytochromes in fungi is critical to reveal the genetic basis of the asexual-sexual switch responsible for fungal growth and distribution, including diverse and destructive plant pathogens. « less
; ; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT The origins and maintenance of the rich fungal diversity have been longstanding issues in evolutionary biology. To investigate how differences in expression regulation contribute to divergences in development and ecology among closely related species, transcriptomes were compared between Chaetomium globosum , a homothallic pathogenic fungus thriving in highly humid ecologies, and Neurospora crassa , a heterothallic postfire saprotroph. Gene expression was quantified in perithecia at nine distinct morphological stages during nearly synchronous sexual development. Unlike N. crassa , expression of all mating loci in C. globosum was highly correlated. Key regulators of the initiation of sexual development in response to light stimuli—including orthologs of N. crassa sub-1 , sub-1 -dependent gene NCU00309, and asl-1 —showed regulatory dynamics matching between C. globosum and N. crassa . Among 24 secondary metabolism gene clusters in C. globosum , 11—including the cochliodones biosynthesis cluster—exhibited highly coordinated expression across perithecial development. C. globosum exhibited coordinately upregulated expression of histidine kinases in hyperosmotic response pathways—consistent with gene expression responses to high humidity we identified in fellow pathogen Fusarium graminearum . Bayesian networks indicated that gene interactions during sexual development have diverged in concert with the capacities both to reproduce asexually and to live a self-compatiblemore »versus self-incompatible life cycle, shifting the hierarchical roles of genes associated with conidiation and heterokaryon incompatibility in N. crassa and C. globosum . This divergence supports an evolutionary history of loss of conidiation due to unfavorable combinations of heterokaryon incompatibility in homothallic species. IMPORTANCE Fungal diversity has amazed evolutionary biologists for decades. One societally important aspect of this diversity manifests in traits that enable pathogenicity. The opportunistic pathogen Chaetomium globosum is well adapted to a high-humidity environment and produces numerous secondary metabolites that defend it from predation. Many of these chemicals can threaten human health. Understanding the phases of the C. globosum life cycle in which these products are made enables better control and even utilization of this fungus. Among its intriguing traits is that it both is self-fertile and lacks any means of propagule-based asexual reproduction. By profiling genome-wide gene expression across the process of sexual reproduction in C. globosum and comparing it to genome-wide gene expression in the model filamentous fungus N. crassa and other closely related fungi, we revealed associations among mating-type genes, sexual developmental genes, sexual incompatibility regulators, environmentally responsive genes, and secondary metabolic pathways.« less
  2. Hug, Laura A. (Ed.)
    ABSTRACT Secondary metabolite clusters (SMCs) encode the machinery for fungal toxin production. However, understanding their function and analyzing their products requires investigation of the developmental and environmental conditions in which they are expressed. Gene expression is often restricted to specific and unexamined stages of the life cycle. Therefore, we applied comparative genomics analyses to identify SMCs in Neurospora crassa and analyzed extensive transcriptomic data spanning nine independent experiments from diverse developmental and environmental conditions to reveal their life cycle-specific gene expression patterns. We reported 20 SMCs comprising 177 genes—a manageable set for investigation of the roles of SMCs across the life cycle of the fungal model N. crassa —as well as gene sets coordinately expressed in 18 predicted SMCs during asexual and sexual growth under three nutritional and two temperature conditions. Divergent activity of SMCs between asexual and sexual development was reported. Of 126 SMC genes that we examined for knockout phenotypes, al-2 and al-3 exhibited phenotypes in asexual growth and conidiation, whereas os-5 , poi-2 , and pmd-1 exhibited phenotypes in sexual development. SMCs with annotated function in mating and crossing were actively regulated during the switch between asexual and sexual growth. Our discoveries call for attention to rolesmore »that SMCs may play in the regulatory switches controlling mode of development, as well as the ecological associations of those developmental stages that may influence expression of SMCs. IMPORTANCE Secondary metabolites (SMs) are low-molecular-weight compounds that often mediate interactions between fungi and their environments. Fungi enriched with SMs are of significant research interest to agriculture and medicine, especially from the aspects of pathogen ecology and environmental epidemiology. However, SM clusters (SMCs) that have been predicted by comparative genomics alone have typically been poorly defined and insufficiently functionally annotated. Therefore, we have investigated coordinate expression in SMCs in the model system N. crassa , and our results suggest that SMCs respond to environmental signals and to stress that are associated with development. This study examined SMC regulation at the level of RNA to integrate observations and knowledge of these genes in various growth and development conditions, supporting combining comparative genomics and inclusive transcriptomics to improve computational annotation of SMCs. Our findings call for detailed study of the function of SMCs during the asexual-sexual switch, a key, often-overlooked developmental stage.« less
  3. Goldman, Gustavo H. (Ed.)
    ABSTRACT Gene expression divergence through evolutionary processes is thought to be important for achieving programmed development in multicellular organisms. To test this premise in filamentous fungi, we investigated transcriptional profiles of 3,942 single-copy orthologous genes (SCOGs) in five related sordariomycete species that have morphologically diverged in the formation of their flask-shaped perithecia. We compared expression of the SCOGs to inferred gene expression levels of the most recent common ancestor of the five species, ranking genes from their largest increases to smallest increases in expression during perithecial development in each of the five species. We found that a large proportion of the genes that exhibited evolved increases in gene expression were important for normal perithecial development in Fusarium graminearum . Many of these genes were previously uncharacterized, encoding hypothetical proteins without any known functional protein domains. Interestingly, the developmental stages during which aberrant knockout phenotypes appeared largely coincided with the elevated expression of the deleted genes. In addition, we identified novel genes that affected normal perithecial development in Magnaporthe oryzae and Neurospora crassa , which were functionally and transcriptionally diverged from the orthologous counterparts in F. graminearum . Furthermore, comparative analysis of developmental transcriptomes and phylostratigraphic analysis suggested that genes encodingmore »hypothetical proteins are generally young and transcriptionally divergent between related species. This study provides tangible evidence of shifts in gene expression that led to acquisition of novel function of orthologous genes in each lineage and demonstrates that several genes with hypothetical function are crucial for shaping multicellular fruiting bodies. IMPORTANCE The fungal class Sordariomycetes includes numerous important plant and animal pathogens. It also provides model systems for studying fungal fruiting body development, as its members develop fruiting bodies with a few well-characterized tissue types on common growth media and have rich genomic resources that enable comparative and functional analyses. To understand transcriptional divergence of key developmental genes between five related sordariomycete fungi, we performed targeted knockouts of genes inferred to have evolved significant upward shifts in expression. We found that many previously uncharacterized genes play indispensable roles at different stages of fruiting body development, which have undergone transcriptional activation in specific lineages. These novel genes are predicted to be phylogenetically young and tend to be involved in lineage- or species-specific function. Transcriptional activation of genes with unknown function seems to be more frequent than ever thought, which may be crucial for rapid adaption to changing environments for successful sexual reproduction.« less
  4. ABSTRACT Fungal spores germinate and undergo vegetative growth, leading to either asexual or sexual reproductive dispersal. Previous research has indicated that among developmental regulatory genes, expression is conserved across nutritional environments, whereas pathways for carbon and nitrogen metabolism appear highly responsive—perhaps to accommodate differential nutritive processing. To comprehensively investigate conidial germination and the adaptive life history decision-making underlying these two modes of reproduction, we profiled transcription of Neurospora crassa germinating on two media: synthetic Bird medium, designed to promote asexual reproduction; and a natural maple sap medium, on which both asexual reproduction and sexual reproduction manifest. A later start to germination but faster development was observed on synthetic medium. Metabolic genes exhibited altered expression in response to nutrients—at least 34% of the genes in the genome were significantly downregulated during the first two stages of conidial germination on synthetic medium. Knockouts of genes exhibiting differential expression across development altered germination and growth rates, as well as in one case causing abnormal germination. A consensus Bayesian network of these genes indicated especially tight integration of environmental sensing, asexual and sexual development, and nitrogen metabolism on a natural medium, suggesting that in natural environments, a more dynamic and tentative balance of asexualmore »and sexual development may be typical of N. crassa colonies. IMPORTANCE One of the most remarkable successes of life is its ability to flourish in response to temporally and spatially varying environments. Fungi occupy diverse ecosystems, and their sensitivity to these environmental changes often drives major fungal life history decisions, including the major switch from vegetative growth to asexual or sexual reproduction. Spore germination comprises the first and simplest stage of vegetative growth. We examined the dependence of this early life history on the nutritional environment using genome-wide transcriptomics. We demonstrated that for developmental regulatory genes, expression was generally conserved across nutritional environments, whereas metabolic gene expression was highly labile. The level of activation of developmental genes did depend on current nutrient conditions, as did the modularity of metabolic and developmental response network interactions. This knowledge is critical to the development of future technologies that could manipulate fungal growth for medical, agricultural, or industrial purposes.« less
  5. Freitag, M (Ed.)
    Abstract Spore killers are meiotic drive elements that can block the development of sexual spores in fungi. In the maize ear rot and mycotoxin-producing fungus Fusarium verticillioides, a spore killer called SkK has been mapped to a 102-kb interval of chromosome V. Here, we show that a gene within this interval, SKC1, is required for SkK-mediated spore killing and meiotic drive. We also demonstrate that SKC1 is associated with at least 4 transcripts, 2 sense (sense-SKC1a and sense-SKC1b) and 2 antisense (antisense-SKC1a and antisense-SKC1b). Both antisense SKC1 transcripts lack obvious protein-coding sequences and thus appear to be noncoding RNAs. In contrast, sense-SKC1a is a protein-coding transcript that undergoes A-to-I editing to sense-SKC1b in sexual tissue. Translation of sense-SKC1a produces a 70-amino-acid protein (Skc1a), whereas the translation of sense-SKC1b produces an 84-amino-acid protein (Skc1b). Heterologous expression analysis of SKC1 transcripts shows that sense-SKC1a also undergoes A-to-I editing to sense-SKC1b during the Neurospora crassa sexual cycle. Site-directed mutagenesis studies indicate that Skc1b is responsible for spore killing in Fusarium verticillioides and that it induces most meiotic cells to die in Neurospora crassa. Finally, we report that SKC1 homologs are present in over 20 Fusarium species. Overall, our results demonstrate that fungal meioticmore »drive elements like SKC1 can influence the outcome of meiosis by hijacking a cell’s A-to-I editing machinery and that the involvement of A-to-I editing in a fungal meiotic drive system does not preclude its horizontal transfer to a distantly related species.« less