skip to main content


Title: The N -glycan structures of the antigenic variants of chlorovirus PBCV-1 major capsid protein help to identify the virus-encoded glycosyltransferases
Award ID(s):
1736030
PAR ID:
10160198
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Journal of Biological Chemistry
Volume:
294
Issue:
14
ISSN:
0021-9258
Page Range / eLocation ID:
5688 to 5699
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Summary

    Distyly is an intriguing floral adaptation that increases pollen transfer precision and restricts inbreeding. It has been a model system in evolutionary biology since Darwin. Although theS‐locus determines the long‐ and short‐styled morphs, the genes were unknown inTurnera. We have now identified these genes.

    We used deletion mapping to identify, and then sequence,BACclones and genome scaffolds to constructS/shaplotypes. We investigated candidate gene expression, hemizygosity, and used mutants, to explore gene function.

    Thes‐haplotype possessed 21 genes collinear with a region of chromosome 7 of grape. TheS‐haplotype possessed three additional genes and two inversions.TsSPH1was expressed in filaments and anthers,TsYUC6in anthers andTsBAHDin pistils. Long‐homostyle mutants did not possessTsBAHDand a short‐homostyle mutant did not expressTsSPH1.

    Three hemizygous genes appear to determine S‐morph characteristics inT. subulata. Hemizygosity is common to all distylous species investigated, yet the genes differ. The pistil candidate gene,TsBAHD, differs from that ofPrimula, but both may inactivate brassinosteroids causing short styles.TsYUC6is involved in auxin synthesis and likely determines pollen characteristics.TsSPH1is likely involved in filament elongation. We propose an incompatibility mechanism involvingTsYUC6andTsBAHD.

     
    more » « less