Photoelectron spectroscopy combined with quantum chemistry has been a powerful approach to elucidate the structures and bonding of size-selected boron clusters (B n − ), revealing a prevalent planar world that laid the foundation for borophenes. Investigations of metal-doped boron clusters not only lead to novel structures but also provide important information about the metal-boron bonds that are critical to understanding the properties of boride materials. The current review focuses on recent advances in transition-metal-doped boron clusters, including the discoveries of metal-boron multiple bonds and metal-doped novel aromatic boron clusters. The study of the RhB − and RhB 2 O − clusters led to the discovery of the first quadruple bond between boron and a transition-metal atom, whereas a metal-boron triple bond was found in ReB 2 O − and IrB 2 O − . The ReB 4 − cluster was shown to be the first metallaborocycle with Möbius aromaticity, and the planar ReB 6 − cluster was found to exhibit aromaticity analogous to metallabenzenes. Expected final online publication date for the Annual Review of Physical Chemistry, Volume 73 is April 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
more »
« less
Observation of Transition‐Metal–Boron Triple Bonds in IrB 2 O − and ReB 2 O −
Abstract Multiple bonds between boron and transition metals are known in many borylene (:BR) complexes via metal dπ→BR back‐donation, despite the electron deficiency of boron. An electron‐precise metal–boron triple bond was first observed in BiB2O−[Bi≡B−B≡O]−in which both boron atoms can be viewed as sp‐hybridized and the [B−BO]−fragment is isoelectronic to a carbyne (CR). To search for the first electron‐precise transition‐metal‐boron triple‐bond species, we have produced IrB2O−and ReB2O−and investigated them by photoelectron spectroscopy and quantum‐chemical calculations. The results allow to elucidate the structures and bonding in the two clusters. We find IrB2O−has a closed‐shell bent structure (Cs,1A′) with BO−coordinated to an Ir≡B unit, (−OB)Ir≡B, whereas ReB2O−is linear (C∞v,3Σ−) with an electron‐precise Re≡B triple bond, [Re≡B−B≡O]−. The results suggest the intriguing possibility of synthesizing compounds with electron‐precise M≡B triple bonds analogous to classical carbyne systems.
more »
« less
- Award ID(s):
- 1763380
- PAR ID:
- 10160286
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Angewandte Chemie International Edition
- Volume:
- 59
- Issue:
- 35
- ISSN:
- 1433-7851
- Page Range / eLocation ID:
- p. 15260-15265
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract In a high‐resolution photoelectron imaging and theoretical study of the IrB3−cluster, two isomers were observed experimentally with electron affinities (EAs) of 1.3147(8) and 1.937(4) eV. Quantum calculations revealed two nearly degenerate isomers competing for the global minimum, both with a B3ring coordinated with the Ir atom. The isomer with the higher EA consists of a B3ring with a bridge‐bonded Ir atom (Cs,2A′), and the second isomer features a tetrahedral structure (C3v,2A1). The neutral tetrahedral structure was predicted to be considerably more stable than all other isomers. Chemical bonding analysis showed that the neutralC3visomer involves significant covalent Ir−B bonding and weak ionic bonding with charge transfer from B3to Ir, and can be viewed as an Ir–(η3‐B3+) complex. This study provides the first example of a boron‐to‐metal charge‐transfer complex and evidence of a π‐aromatic B3+ring coordinated to a transition metal.more » « less
-
Abstract Despite its electron deficiency, boron can form multiple bonds with a variety of elements. However, multiple bonds between boron and main-group metal elements are relatively rare. Here we report the observation of boron-lead multiple bonds in PbB2O–and PbB3O2–, which are produced and characterized in a cluster beam. PbB2O–is found to have an open-shell linear structure, in which the bond order of B☱Pb is 2.5, while the closed-shell [Pb≡B–B≡O]2–contains a B≡Pb triple bond. PbB3O2–is shown to have a Y-shaped structure with a terminal B = Pb double bond coordinated by two boronyl ligands. Comparison between [Pb≡B–B≡O]2–/[Pb=B(B≡O)2]–and the isoelectronic [Pb≡B–C≡O]–/[Pb=B(C≡O)2]+carbonyl counterparts further reveals transition-metal-like behaviors for the central B atoms. Additional theoretical studies show that Ge and Sn can form similar boron species as Pb, suggesting the possibilities to synthesize new compounds containing multiple boron bonds with heavy group-14 elements.more » « less
An official website of the United States government
