skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Porous Organic Polymer Nanotrap for Efficient Extraction of Palladium
Abstract To offset the environmental impact of platinum‐group element (PGE) mining, recycling techniques are being explored. Porous organic polymers (POPs) have shown significant promise owing to their selectivity and ability to withstand harsh conditions. A series of pyridine‐based POP nanotraps, POP‐Py, POP‐pNH2‐Py, and POP‐oNH2‐Py, have been designed and systematically explored for the capture of palladium, one of the most utilized PGEs. All of the POP nanotraps demonstrated record uptakes and rapid capture, with the amino group shown to be vital in improving performance. Further testing on the POP nanotrap regeneration and selectivity found that POP‐oNH2‐Py outperformed POP‐pNH2‐Py. Single‐crystal X‐ray analysis indicated that POP‐oNH2‐Py provided a stronger complex compared to POP‐pNH2‐Py owing to the intramolecular hydrogen bonding between the amino group and coordinated chlorine molecules. These results demonstrate how slight modifications to adsorbents can maximize their performance.  more » « less
Award ID(s):
1706025
PAR ID:
10160288
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Angewandte Chemie International Edition
Volume:
59
Issue:
44
ISSN:
1433-7851
Format(s):
Medium: X Size: p. 19618-19622
Size(s):
p. 19618-19622
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract To offset the environmental impact of platinum‐group element (PGE) mining, recycling techniques are being explored. Porous organic polymers (POPs) have shown significant promise owing to their selectivity and ability to withstand harsh conditions. A series of pyridine‐based POP nanotraps, POP‐Py, POP‐pNH2‐Py, and POP‐oNH2‐Py, have been designed and systematically explored for the capture of palladium, one of the most utilized PGEs. All of the POP nanotraps demonstrated record uptakes and rapid capture, with the amino group shown to be vital in improving performance. Further testing on the POP nanotrap regeneration and selectivity found that POP‐oNH2‐Py outperformed POP‐pNH2‐Py. Single‐crystal X‐ray analysis indicated that POP‐oNH2‐Py provided a stronger complex compared to POP‐pNH2‐Py owing to the intramolecular hydrogen bonding between the amino group and coordinated chlorine molecules. These results demonstrate how slight modifications to adsorbents can maximize their performance. 
    more » « less
  2. Abstract Owing to their overall low energy scales, flexible molecular architectures, and ease of chemical substitution, molecule-based multiferroics are extraordinarily responsive to external stimuli and exhibit remarkably rich phase diagrams. Even so, the stability and microscopic properties of various magnetic states in close proximity to quantum critical points are highly under-explored in these materials. Inspired by these opportunities, we combined pulsed-field magnetization, first-principles calculations, and numerical simulations to reveal the magnetic field–temperature (B–T) phase diagram of multiferroic (NH4)2FeCl5⋅H2O. In this system, a network of intermolecular hydrogen and halogen bonds creates a competing set of exchange interactions that generates additional structure in the phase diagram—both in the vicinity of the spin flop and near the 30 T transition to the fully saturated state. Consequently, the phase diagrams of (NH4)2FeCl5⋅H2O and its deuterated analog are much more complex than those of other molecule-based multiferroics. The entire series of coupled electric and magnetic transitions can be accessed with a powered magnet, opening the door to exploration and control of properties in this and related materials. 
    more » « less
  3. Abstract Phosphonic acid (PA) self‐assembled monolayers (SAMs) were deposited onto Pt/Al2O3catalysts to modify the support to enable control over CO2adsorption and CO2hydrogenation activity. Significant differences in catalytic activity toward CO2hydrogenation (reverse water‐gas shift, RWGS) were observed after coating Al2O3with PAs, suggesting that the reaction was mediated by CO2adsorption on the support. Amine‐functionalized PAs were found to outperform their alkyl counterparts in terms of activity, however there was little effect of amine location in the SAM (i. e., spacing between the amine functional group and phosphonate attachment group). One amine‐PA and one alkyl‐PA, aminopropyl phosphonic acid (C3NH2PA) and methyl phosphonic acid (C1PA), respectively, were investigated in more detail. The C3NH2PA‐modified catalyst was found to bind CO2as a combination of carbamate and bicarbonate. Additionally, at 30 °C, both PAs were found to reduce CO2adsorption uptake by approximately 50 % compared to unmodified 5 %Pt/Al2O3. CO2adsorption enthalpy was measured for the catalysts and found to be strongly correlated with hydrogenation activity, with the trend in binding enthalpy and CO2hydrogen rate trending as uncoated >C3NH2PA>C1PA. PA SAMs were found to have weaker effects on CO binding and CO selectivity, consistent with selective modification of the Al2O3support by the PAs. 
    more » « less
  4. Abstract The recovery and separation of organic solvents is highly important for the chemical industry and environmental protection. In this context, porous organic polymers (POPs) have significant potential owing to the possibility of integrating shape‐persistent macrocyclic units with high guest selectivity. Here, we report the synthesis of a macrocyclic porous organic polymer (np‐POP) and the corresponding model compound by reacting the cyclotetrabenzil naphthalene octaketone macrocycle with 1,2,4,5‐tetraaminobenzene and 1,2‐diaminobenzene, respectively, under solvothermal conditions. Co‐crystallization of the macrocycle and the model compound with various solvent molecules revealed their size‐selective inclusion within the macrocycle. Building on this finding, thenp‐POP with a hierarchical pore structure and a surface area of 579 m2 g−1showed solvent uptake strongly correlated with their kinetic diameters. Solvents with kinetic diameters below 0.6 nm – such as acetonitrile and dichloromethane – showed high uptake capacities exceeding 7 mmol g−1. Xylene separation tests revealed a high overall uptake (~34 wt %), witho‐xylene displaying a significantly lower uptake (~10 wt % less than other isomers), demonstrating the possibility of size and shape selective separation of organic solvents. 
    more » « less
  5. Abstract The electrochemical reduction of nitrates (NO3) enables a pathway for the carbon neutral synthesis of ammonia (NH3), via the nitrate reduction reaction (NO3RR), which has been demonstrated at high selectivity. However, to make NH3synthesis cost‐competitive with current technologies, high NH3partial current densities (jNH3) must be achieved to reduce the levelized cost of NH3. Here, the high NO3RR activity of Fe‐based materials is leveraged to synthesize a novel active particle‐active support system with Fe2O3nanoparticles supported on atomically dispersed Fe–N–C. The optimized 3×Fe2O3/Fe–N–C catalyst demonstrates an ultrahigh NO3RR activity, reaching a maximum jNH3of 1.95 A cm−2at a Faradaic efficiency (FE) for NH3of 100% and an NH3yield rate over 9 mmol hr−1cm−2. Operando XANES and post‐mortem XPS reveal the importance of a pre‐reduction activation step, reducing the surface Fe2O3(Fe3+) to highly active Fe0sites, which are maintained during electrolysis. Durability studies demonstrate the robustness of both the Fe2O3particles and Fe–Nxsites at highly cathodic potentials, maintaining a current of −1.3 A cm−2over 24 hours. This work exhibits an effective and durable active particle‐active support system enhancing the performance of the NO3RR, enabling industrially relevant current densities and near 100% selectivity. 
    more » « less