skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Investigation of Advanced NBA Metrics
Currently, a variety of popular quality metrics exist for NBA players such as Value Over Replacement Player (VORP), Player Efficiency Rating (PER), and Win Shares (WS). Despite their often relatively simple formulations, less is known regarding how traditional box score statistics may disproportionately affect player quality with respect to these different measures. Using traditional per-36 minute statistics along with more modern advanced metrics from the previous 15 seasons, we predict VORP, PER, and WS using a variety of approaches ranging from linear models to more advanced methods like random forests and tree-augmented regression. In addition to assessing fit, we pay particular attention to partial effects of individual statistics on each response, allowing us to investigate which types of players are favored by different measures. Finally, we test our models and conclusions by predicting VORP, PER, and WS for a sample of top NBA players from the 2016/2017 season.  more » « less
Award ID(s):
1712041
PAR ID:
10160484
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
CMU Sports Analytics Conference
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Modeling player engagement is a key challenge in games. However, the gameplay signatures of engaged players can be highly context-sensitive, varying based on where the game is used or what population of players is using it. Traditionally, models of player engagement are investigated in a particular context, and it is unclear how effectively these models generalize to other settings and populations. In this work, we investigate a Bayesian hierarchical linear model for multi-task learning to devise a model of player engagement from a pair of datasets that were gathered in two complementary contexts: a Classroom Study with middle school students and a Laboratory Study with undergraduate students. Both groups of players used similar versions of Crystal Island, an educational interactive narrative game for science learning. Results indicate that the Bayesian hierarchical model outperforms both pooled and context-specific models in cross-validation measures of predicting player motivation from in-game behaviors, particularly for the smaller Classroom Study group. Further, we find that the posterior distributions of model parameters indicate that the coefficient for a measure of gameplay performance significantly differs between groups. Drawing upon their capacity to share information across groups, hierarchical Bayesian methods provide an effective approach for modeling player engagement with data from similar, but different, contexts. 
    more » « less
  2. Abstract Many-body dynamical models in which Boltzmann statistics can be derived directly from the underlying dynamical laws without invoking the fundamental postulates of statistical mechanics are scarce. Interestingly, one such model is found in econophysics and in chemistry classrooms: the money game, in which players exchange money randomly in a process that resembles elastic intermolecular collisions in a gas, giving rise to the Boltzmann distribution of money owned by each player. Although this model offers a pedagogical example that demonstrates the origins of Boltzmann statistics, such demonstrations usually rely on computer simulations. In fact, a proof of the exponential steady-state distribution in this model has only become available in recent years. Here, we study this random money/energy exchange model and its extensions using a simple mean-field-type approach that examines the properties of the one-dimensional random walk performed by one of its participants. We give a simple derivation of the Boltzmann steady-state distribution in this model. Breaking the time-reversal symmetry of the game by modifying its rules results in non-Boltzmann steady-state statistics. In particular, introducing ‘unfair’ exchange rules in which a poorer player is more likely to give money to a richer player than to receive money from that richer player, results in an analytically provable Pareto-type power-law distribution of the money in the limit where the number of players is infinite, with a finite fraction of players in the ‘ground state’ (i.e. with zero money). For a finite number of players, however, the game may give rise to a bimodal distribution of money and to bistable dynamics, in which a participant’s wealth jumps between poor and rich states. The latter corresponds to a scenario where the player accumulates nearly all the available money in the game. The time evolution of a player’s wealth in this case can be thought of as a ‘chemical reaction’, where a transition between ‘reactants’ (rich state) and ‘products’ (poor state) involves crossing a large free energy barrier. We thus analyze the trajectories generated from the game using ideas from the theory of transition paths and highlight non-Markovian effects in the barrier crossing dynamics. 
    more » « less
  3. We release FOOLMETWICE (FM2 for short), a large dataset of challenging entailment pairs collected through a fun multi-player game. Gamification encourages adversarial examples, drastically lowering the number of examples that can be solved using “shortcuts” compared to other entailment datasets. Players are presented with two tasks. The first task asks the player to write a plausible claim based on the evidence from a Wikipedia page. The second one shows two plausible claims written by other players, one of which is false, and the goal is to identify it before the time runs out. Players “pay” to see clues retrieved from the evidence pool: the more evidence the player needs, the harder the claim. Game-play between motivated players leads to diverse strategies for crafting claims, such as temporal inference and diverting to unrelated evidence, and results in higher quality data for the entailment and evidence retrieval tasks. We open source the dataset and game code. 
    more » « less
  4. In this paper, we study how to support high-quality immer- sive multiplayer VR on commodity mobile devices. First, we perform a scaling experiment that shows simply replicating the prior-art 2-layer distributed VR rendering architecture to multiple players cannot support more than one player due to the linear increase in network bandwidth requirement. Second, we propose to exploit the similarity of background environment (BE) frames to reduce the bandwidth needed for prefetching BE frames from the server, by caching and reusing similar frames. We nd that there is often little sim- ilarly between the BE frames of even adjacent locations in the virtual world due to a “near-object” e ect. We propose a novel technique that splits the rendering of BE frames between the mobile device and the server that drastically enhances the similarity of the BE frames and reduces the network load from frame caching. Evaluation of our imple- mentation on top of Unity and Google Daydream shows our new VR framework, Coterie, reduces per-player network requirement by 10.6X-25.7X and easily supports 4 players for high-resolution VR apps on Pixel 2 over 802.11ac, with 60 FPS and under 16ms responsiveness. 
    more » « less
  5. Experience management (EM) agents in multiplayer serious games face unique challenges and responsibilities regarding the fair treatment of players. One such challenge is the Greedy Bandit Problem that arises when using traditional Multi-Armed Bandits (MABs) as EM agents, which results in some players routinely prioritized while others may be ignored. We will show that this problem can be a cause of player non-adherence in a multiplayer serious game played by human users. To mitigate this effect, we propose a new bandit strategy, the Shapley Bandit, which enforces fairness constraints in its treatment of players based on the Shapley Value. We evaluate our approach via simulation with virtual players, finding that the Shapley Bandit can be effective in providing more uniform treatment of players while incurring only a slight cost in overall performance to a typical greedy approach. Our findings highlight the importance of fair treatment among players as a goal of multiplayer EM agents and discuss how addressing this issue may lead to more effective agent operation overall. The study contributes to the understanding of player modeling and EM in serious games and provides a promising approach for balancing fairness and engagement in multiplayer environments. 
    more » « less