Abstract Almadasuchus figariiis a basal crocodylomorph recovered from the Upper Jurassic levels of the Cañadón Calcáreo Formation (Oxfordian–Tithonian) of Chubut, Argentina. This taxon is represented by cranial remains, which consist of partial snout and palatal remains; an excellently preserved posterior region of the skull; and isolated postcranial remains. The skull of the only specimen of the monotypicAlmadasuchuswas restudied using high‐resolution computed micro tomography.Almadasuchushas an apomorphic condition in its skull shared with the closest relatives of crocodyliforms (i.e. hallopodids) where the quadrates are sutured to the laterosphenoids and the otoccipital contacts the quadrate posterolaterally, reorganizing the exit of several cranial nerves (e.g. vagus foramen) and the entry of blood vessels (e.g. internal carotids) on the occipital surface of the skull. The endocast is tubular, as previously reported in thalattosuchians, but has a marked posterior step, and a strongly projected floccular recess as in other basal crocodylomorphs. Internally, the skull ofAlmadasuchusis heavily pneumatized, where different air cavities invade the bones of the suspensorium and braincase, both on its dorsal or ventral parts.Almadasuchushas a large basioccipital recess, which is formed by cavities that excavate the basioccipital and the posterior surface of the basisphenoid, and unlike other crocodylomorphs is connected with the basisphenoid pneumatizations. Ventral to the otic capsule, a pneumatic cavity surrounded by the otoccipital and basisphenoid is identified as the rhomboidal recess. The quadrate ofAlmadasuchusis highly pneumatized, being completely hollow, and the dorsal pneumatizations of the braincase are formed by the mastoid and facial antra, and a laterosphenoid cavity (trigeminal diverticulum). To better understand the origins of pneumatic features in living crocodylomorphs we studied cranial pneumaticity in the basal members of Crocodylomorpha and found that: (a) prootic pneumaticity may be a synapomorphy for the whole clade; (b) basisphenoid pneumaticity (pre‐, postcarotid and rostral recesses) is a derived feature among basal crocodylomorphs; (c) quadrate pneumatization is acquired later in the history of the group; and (d) the rhomboidal sinus is a shared derived trait of hallopodids and crocodyliforms. The marine thallatosuchians exhibit a reduction of the pneumaticity of the braincase and this reduction is evaluated considering the two phylogenetic positions proposed for the clade. 
                        more » 
                        « less   
                    
                            
                            New genus and species of djadochtatheriid multituberculate (Allotheria, Mammalia) from the Upper Cretaceous Bayan Mandahu Formation of Inner Mongolia
                        
                    
    
            The superfamily Djadochtatherioidea is a distinctive clade of multituberculates from Upper Cretaceous beds of Mongolia and Inner Mongolia, China. Because many of the 11 included genera are known from skulls, more is known about the cranial anatomy of djadochtatherioids than any other clade of multituberculates. Within Djadochtatherioidea, the most diverse and widely accepted group is the family Djadochtatheriidae. Within the family, the basal genus, Kryptobaatar Kielan-Jaworowska, 1970, is small with a skull length of about 30 mm, whereas the other four genera, Djadochtatherium Simpson, 1925, Catopsbaatar Kielan-Jaworowska, 1994, Tombaatar Rougier et al., 1997, and Mangasbaatar Rougier et al., 2016, have skulls approximately twice as long. Here, we describe a new genus and species, Guibaatar castellanus, based on a single specimen from the Upper Cretaceous Bayan Mandahu Formation, Inner Mongolia that we refer to Djadochtatheriidae. Guibaatar is represented by a relatively complete rostrum, a partial right braincase, and partial lower jaws. As revealed by CT scanning, the specimen is a juvenile, with deciduous enlarged upper and lower incisors with permanent replacements forming, m2 erupting, and M2 forming. Based on the preserved cranial parts, we estimate the skull length to be approximately 50 mm, but as an adult, Guibaatar would have been in the size range of the larger djadochtatheriids. Phylogenetic analysis including Guibaatar, known djadochtatherioids, and outgroups places Guibaatar within Djadochtatheriidae, as sister to a clade of Mangasbaatar and Catopsbaatar. We suspect the relationships of djadochtatherioids are likely to be refined given the announcements by other researchers that skulls are known for the djadochtatheriids Tombaatar and Djadochtatherium, which were previously represented by incomplete material. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1654949
- PAR ID:
- 10160590
- Date Published:
- Journal Name:
- Annals of Carnegie Museum
- Volume:
- 85
- Issue:
- 4
- ISSN:
- 1943-6300
- Page Range / eLocation ID:
- 285-327
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            null (Ed.)The cranium of Adalatherium hui, as represented in the holotype and only specimen (UA 9030), is only the second known for any gondwanatherian mammal, the other being that of the sudamericid Vintana sertichi. Both Adalatherium and Vintana were recovered from the Upper Cretaceous (Maastrichtian) Maevarano Formation of northwestern Madagascar. UA 9030 is the most complete specimen of a gondwanatherian yet known and includes, in addition to the cranium, both lower jaws and a complete postcranial skeleton. Aside from Adalatherium and Vintana, gondwanatherians are otherwise represented only by isolated teeth and lower jaw fragments, belonging to eight monotypic genera from Late Cretaceous and Paleogene horizons of Madagascar, the Indian subcontinent, Africa, South America, and the Antarctic Peninsula. Although the anterior part of the cranium is very well preserved in UA 9030, the posterior part is not. Nonetheless, comparable parts of the crania of Adalatherium and Vintana indicate some level of common ancestry through possession of several synapomorphies, primarily related to the bony composition, articular relationships, and features of the snout region. Overprinted on this shared morphology are a host of autapomorphic features in each genus, some unique among mammaliaforms and some convergent upon therian mammals. The cranium of Adalatherium is compared with the crania of other mammaliamorphs, particularly those of allotherians or purported allotherians (i.e., haramiyidans, euharamiyidans, multituberculates, Cifelliodon, and Megaconus). Particular emphasis is placed on several recently described forms: the enigmatic Cifelliodon from the Early Cretaceous of Utah and several new taxa of euharamiyidans from the Late Jurassic of China.more » « less
- 
            Abstract Although the Cretaceous is widely regarded as a time of great evolutionary transition for the freshwater fish fauna of North America, the fossil record of this period is notoriously poor, consisting mostly of fragments and isolated skeletal elements. Exceptions include the acipenseriforms, discussed in this paper, and some exceedingly rare teleosts. Here we describe two new species of well-preserved sturgeons (Acipenseridae) from the Tanis site in the Late Cretaceous Hell Creek Formation of North Dakota. The type and referred materials were preserved in a loosely consolidated matrix. † Acipenser praeparatorum n. sp. is represented by multiple body fossils (including the head and relatively complete postcranial remains) and a specimen of an intact, three dimensionally preserved skull and pectoral girdle. This taxon can be diagnosed based on features of the opercular elements (exceptionally tall and narrow branchiostegal). The second species, † Acipenser anisinferos n. sp., is represented by a partially preserved skull, and can be diagnosed by a relatively elongate preorbital region (i.e., snout) and the absence of thorn-like spines on the skull roofing bones. Most known sturgeon fossils from the Cretaceous are represented only by undiagnosable fragmentary remains (i.e., scutes and pectoral-fin spines) or poorly preserved partial skeletons (e.g., † Protoscaphirhynchus ), with † Priscosturion and † Anchiacipenser (both monotypic) being rare exceptions. Therefore, the newly discovered Tanis fossils give a rare glimpse into the evolution of Acipenseridae at a critical time in the phylogenetic history of acipenseriforms, and suggest significant morphological and taxonomic diversity early in the evolution of this group. UUID: http://zoobank.org/375b586a-2dd8-4a31-b6c4-42151e6e8fc8more » « less
- 
            Arundelemys dardeni is an Early Cretaceous paracryptodire known from a single, incomplete, but generally well-preserved skull. Phylogenetic hypotheses of paracryptodires often find Arundelemys dardeni as an early branching baenid. As such, it has a central role in understanding the early evolution of the successful clade Baenidae, which survived the Cretaceous–Paleogene mass extinction, as well as the diversification of Paracryptodira into its subclades, which recent research suggests to perhaps include helochelydrids, compsemydids, pleurosternids, and baenids. Computer tomography scans of the holotype material that were produced for the initial description of Arundelemeys dardeni reveal several errors in the initial anatomical description of the species, which we correct based on element-by-element segmentation. In addition, we provide entirely novel anatomical information, including descriptions of several previously undescribed cranial bones, the endosseous labyrinth, and the cranial scutes, the latter of which are unknown for most paracryptodires. We provide an interpretation of cranial scutes which homologizes the scutes of Arundelemys dardeni with those of other stem turtles.more » « less
- 
            Abstract Squamata is the most diverse clade of terrestrial vertebrates. Although the origin of pan-squamates lies in the Triassic, the oldest undisputed members of extant clades known from nearly complete, uncrushed material come from the Cretaceous. Here, we describe three-dimensionally preserved partial skulls of two new crown lizards from the Late Jurassic of North America. Both species are placed at the base of the skink, girdled, and night lizard clade Pan-Scincoidea, which consistently occupies a position deep inside the squamate crown in both morphological and molecular phylogenies. The new lizards show that several features uniting pan-scincoids with another major lizard clade, the pan-lacertoids, in trees using morphology were convergently acquired as predicted by molecular analyses. Further, the palate of one new lizard bears a handful of ancestral saurian characteristics lost in nearly all extant squamates, revealing an underappreciated degree of complex morphological evolution in the early squamate crown. We find strong evidence for close relationships between the two new species and Cretaceous taxa from Eurasia. Together, these results suggest that early crown squamates had a wide geographic distribution and experienced complicated morphological evolution even while the Rhynchocephalia, now solely represented by the tuatara, was the dominant clade of lepidosaurs.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    