skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Evolutionary roads leading to low effective spins, high black hole masses, and O1/O2 rates for LIGO/Virgo binary black holes
All ten LIGO/Virgo binary black hole (BH-BH) coalescences reported following the O1/O2 runs have near-zero effective spins. There are only three potential explanations for this. If the BH spin magnitudes are large, then: (i) either both BH spin vectors must be nearly in the orbital plane or (ii) the spin angular momenta of the BHs must be oppositely directed and similar in magnitude. Then there is also the possibility that (iii) the BH spin magnitudes are small. We consider the third hypothesis within the framework of the classical isolated binary evolution scenario of the BH-BH merger formation. We test three models of angular momentum transport in massive stars: a mildly efficient transport by meridional currents (as employed in the Geneva code), an efficient transport by the Tayler-Spruit magnetic dynamo (as implemented in the MESA code), and a very-efficient transport (as proposed by Fuller et al.) to calculate natal BH spins. We allow for binary evolution to increase the BH spins through accretion and account for the potential spin-up of stars through tidal interactions. Additionally, we update the calculations of the stellar-origin BH masses, including revisions to the history of star formation and to the chemical evolution across cosmic time. We find that we can simultaneously match the observed BH-BH merger rate density and BH masses and BH-BH effective spins. Models with efficient angular momentum transport are favored. The updated stellar-mass weighted gas-phase metallicity evolution now used in our models appears to be key for obtaining an improved reproduction of the LIGO/Virgo merger rate estimate. Mass losses during the pair-instability pulsation supernova phase are likely to be overestimated if the merger GW170729 hosts a BH more massive than 50  M ⊙ . We also estimate rates of black hole-neutron star (BH-NS) mergers from recent LIGO/Virgo observations. If, in fact. angular momentum transport in massive stars is efficient, then any (electromagnetic or gravitational wave) observation of a rapidly spinning BH would indicate either a very effective tidal spin up of the progenitor star (homogeneous evolution, high-mass X-ray binary formation through case A mass transfer, or a spin- up of a Wolf-Rayet star in a close binary by a close companion), significant mass accretion by the hole, or a BH formation through the merger of two or more BHs (in a dense stellar cluster).  more » « less
Award ID(s):
1707965 1708081 1841358 1707954 1807046
PAR ID:
10160687
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Date Published:
Journal Name:
Astronomy & Astrophysics
Volume:
636
ISSN:
0004-6361
Page Range / eLocation ID:
A104
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract GW231123, the most massive binary black hole (BBH) merger detected by LIGO–Virgo–KAGRA, highlights the need to understand the origins of massive, high-spin stellar black holes (BHs). Dense star clusters provide natural environments for forming such systems, beyond the limits of standard massive star evolution to core collapse. While repeated BBH mergers can grow BHs through dynamical interactions (the so-called “hierarchical merger” channel), most star clusters with masses ≲106Mhave escape speeds too low to retain higher-generation BHs, limiting growth into or beyond the mass gap. In contrast, BH–star collisions with subsequent accretion of the collision debris can grow and retain BHs irrespective of the cluster escape speed. UsingN-body (Cluster Monte Carlo) simulations, we study BH growth and spin evolution through this process, and we find that accretion can drive BH masses up to at least ∼200M, with spins set by the details of the growth history. BHs up to about 150Mcan reach dimensionless spinsχ ≳ 0.7 via single coherent episodes, while more massive BHs form through multiple stochastic accretion events and eventually spin down toχ ≲ 0.4. These BHs later form binaries through dynamical encounters, producing BBH mergers that contribute up to ∼10% of all detectable events, comparable to predictions for the hierarchical channel. However, the two pathways predict distinct signatures: hierarchical mergers yield more unequal mass ratios, whereas accretion-grown BHs preferentially form near-equal-mass binaries. The accretion-driven channel allows dense clusters with low escape speeds, such as globular clusters, to produce highly spinning BBHs with both components in or above the mass gap, providing a natural formation pathway to GW231123-like systems. 
    more » « less
  2. Abstract Current theoretical models predict a mass gap with a dearth of stellar black holes (BHs) between roughly 50 M ⊙ and 100 M ⊙ , while above the range accessible through massive star evolution, intermediate-mass BHs (IMBHs) still remain elusive. Repeated mergers of binary BHs, detectable via gravitational-wave emission with the current LIGO/Virgo/Kagra interferometers and future detectors such as LISA or the Einstein Telescope, can form both mass-gap BHs and IMBHs. Here we explore the possibility that mass-gap BHs and IMBHs are born as a result of successive BH mergers in dense star clusters. In particular, nuclear star clusters at the centers of galaxies have deep enough potential wells to retain most of the BH merger products after they receive significant recoil kicks due to anisotropic emission of gravitational radiation. Using for the first time simulations that include full stellar evolution, we show that a massive stellar BH seed can easily grow to ∼10 3 –10 4 M ⊙ as a result of repeated mergers with other smaller BHs. We find that lowering the cluster metallicity leads to larger final BH masses. We also show that the growing BH spin tends to decrease in magnitude with the number of mergers so that a negative correlation exists between the final mass and spin of the resulting IMBHs. Assumptions about the birth spins of stellar BHs affect our results significantly, with low birth spins leading to the production of a larger population of massive BHs. 
    more » « less
  3. Observations of X-ray binaries indicate a dearth of compact objects in the mass range from ∼2 − 5  M ⊙ . The existence of this (first mass) gap has been used to discriminate between proposed engines behind core-collapse supernovae. From LIGO/Virgo observations of binary compact remnant masses, several candidate first mass gap objects, either neutron stars (NSs) or black holes (BHs), were identified during the O3 science run. Motivated by these new observations, we study the formation of BH-NS mergers in the framework of isolated classical binary evolution, using population synthesis methods to evolve large populations of binary stars (Population I and II) across cosmic time. We present results on the NS to BH mass ratios ( q  =  M NS / M BH ) in merging systems, showing that although systems with a mass ratio as low as q  = 0.02 can exist, typically BH-NS systems form with moderate mass ratios q  = 0.1 − 0.2. If we adopt a delayed supernova engine, we conclude that ∼30% of BH-NS mergers may host at least one compact object in the first mass gap (FMG). Even allowing for uncertainties in the processes behind compact object formation, we expect the fraction of BH-NS systems ejecting mass during the merger to be small (from ∼0.6 − 9%). In our reference model, we assume: (i) the formation of compact objects within the FMG, (ii) natal NS/BH kicks decreased by fallback, (iii) low BH spins due to Tayler-Spruit angular momentum transport in massive stars. We find that ≲1% of BH-NS mergers will have any mass ejection and about the same percentage will produce kilonova bright enough to have a chance of being detected with a large (Subaru-class) 8 m telescope. Interestingly, all these mergers will have both a BH and an NS in the FMG. 
    more » « less
  4. Abstract Merging binary black holes (BBHs) formed dynamically in dense star clusters are expected to have uncorrelated spin–orbit orientations since they are assembled through many random interactions. However, measured effective spins in BBHs detected by LIGO/Virgo/KAGRA hint at additional physical processes that may introduce anisotropy. Here we address this question by exploring the impact of stellar collisions and accretion of collision debris on the spin–orbit alignment in merging BBHs formed in dense star clusters. Through hydrodynamic simulations, we study the regime where the disruption of a massive star by a BBH causes the stellar debris to form individual accretion disks bound to each black hole (BH). We show that these disks, which are randomly oriented relative to the binary orbital plane after the initial disruption of the star, can be reoriented by strong tidal torques in the binary near pericenter passages. Following accretion by the BHs on longer timescales, BBHs with small but preferentially positive effective spin parameters (χeff≲ 0.2) are formed. Our results indicate that BBH collisions in young massive star clusters could contribute to the observed trend toward small positiveχeff, and we suggest that the standard assumption often made that dynamically assembled BBHs should have isotropically distributed BH spins is not always justified. 
    more » « less
  5. Abstract We propose a formation pathway linking black holes (BHs) observed in gravitational-wave (GW) mergers, wide BH–stellar systems uncovered by Gaia, and accreting low-mass X-ray binaries (LMXBs). In this scenario, a stellar-mass BH binary undergoes isolated binary evolution and merges while hosting a distant, dynamically unimportant tertiary stellar companion. The tertiary becomes relevant only after the merger, when the remnant BH receives a GW recoil kick. Depending on the kick velocity and system configuration, the outcome can be: (1) a bright electromagnetic (EM) counterpart to the GW merger; (2) an LMXB; (3) a wide BH–stellar companion system resembling the Gaia BH population; or (4) an unbound isolated BH. Modeling the three-body dynamics, we find that ∼0.02% of LIGO–Virgo–KAGRA (LVK) mergers may be followed by an EM counterpart within ∼10 days, produced by tidal disruption of the star by the BH. The flare is likely brightest in the optical–UV and lasts for days to weeks; in some cases, partial disruption causes recurring flares with a period of ∼2 months. We further estimate that this channel can produce ∼1%–10% of Gaia BH systems in the Milky Way. This scenario provides the first physically motivated link between GW sources, Gaia BHs, and some X-ray binaries, and predicts a rare but robust pathway for EM counterparts to binary BH mergers, potentially detectable in LVK’s O5 run. 
    more » « less