skip to main content


Title: Evolutionary roads leading to low effective spins, high black hole masses, and O1/O2 rates for LIGO/Virgo binary black holes
All ten LIGO/Virgo binary black hole (BH-BH) coalescences reported following the O1/O2 runs have near-zero effective spins. There are only three potential explanations for this. If the BH spin magnitudes are large, then: (i) either both BH spin vectors must be nearly in the orbital plane or (ii) the spin angular momenta of the BHs must be oppositely directed and similar in magnitude. Then there is also the possibility that (iii) the BH spin magnitudes are small. We consider the third hypothesis within the framework of the classical isolated binary evolution scenario of the BH-BH merger formation. We test three models of angular momentum transport in massive stars: a mildly efficient transport by meridional currents (as employed in the Geneva code), an efficient transport by the Tayler-Spruit magnetic dynamo (as implemented in the MESA code), and a very-efficient transport (as proposed by Fuller et al.) to calculate natal BH spins. We allow for binary evolution to increase the BH spins through accretion and account for the potential spin-up of stars through tidal interactions. Additionally, we update the calculations of the stellar-origin BH masses, including revisions to the history of star formation and to the chemical evolution across cosmic time. We find that we can simultaneously match the observed BH-BH merger rate density and BH masses and BH-BH effective spins. Models with efficient angular momentum transport are favored. The updated stellar-mass weighted gas-phase metallicity evolution now used in our models appears to be key for obtaining an improved reproduction of the LIGO/Virgo merger rate estimate. Mass losses during the pair-instability pulsation supernova phase are likely to be overestimated if the merger GW170729 hosts a BH more massive than 50  M ⊙ . We also estimate rates of black hole-neutron star (BH-NS) mergers from recent LIGO/Virgo observations. If, in fact. angular momentum transport in massive stars is efficient, then any (electromagnetic or gravitational wave) observation of a rapidly spinning BH would indicate either a very effective tidal spin up of the progenitor star (homogeneous evolution, high-mass X-ray binary formation through case A mass transfer, or a spin- up of a Wolf-Rayet star in a close binary by a close companion), significant mass accretion by the hole, or a BH formation through the merger of two or more BHs (in a dense stellar cluster).  more » « less
Award ID(s):
1707965 1708081 1841358 1707954 1807046
NSF-PAR ID:
10160687
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Date Published:
Journal Name:
Astronomy & Astrophysics
Volume:
636
ISSN:
0004-6361
Page Range / eLocation ID:
A104
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Observations of X-ray binaries indicate a dearth of compact objects in the mass range from ∼2 − 5  M ⊙ . The existence of this (first mass) gap has been used to discriminate between proposed engines behind core-collapse supernovae. From LIGO/Virgo observations of binary compact remnant masses, several candidate first mass gap objects, either neutron stars (NSs) or black holes (BHs), were identified during the O3 science run. Motivated by these new observations, we study the formation of BH-NS mergers in the framework of isolated classical binary evolution, using population synthesis methods to evolve large populations of binary stars (Population I and II) across cosmic time. We present results on the NS to BH mass ratios ( q  =  M NS / M BH ) in merging systems, showing that although systems with a mass ratio as low as q  = 0.02 can exist, typically BH-NS systems form with moderate mass ratios q  = 0.1 − 0.2. If we adopt a delayed supernova engine, we conclude that ∼30% of BH-NS mergers may host at least one compact object in the first mass gap (FMG). Even allowing for uncertainties in the processes behind compact object formation, we expect the fraction of BH-NS systems ejecting mass during the merger to be small (from ∼0.6 − 9%). In our reference model, we assume: (i) the formation of compact objects within the FMG, (ii) natal NS/BH kicks decreased by fallback, (iii) low BH spins due to Tayler-Spruit angular momentum transport in massive stars. We find that ≲1% of BH-NS mergers will have any mass ejection and about the same percentage will produce kilonova bright enough to have a chance of being detected with a large (Subaru-class) 8 m telescope. Interestingly, all these mergers will have both a BH and an NS in the FMG. 
    more » « less
  2. Abstract Current theoretical models predict a mass gap with a dearth of stellar black holes (BHs) between roughly 50 M ⊙ and 100 M ⊙ , while above the range accessible through massive star evolution, intermediate-mass BHs (IMBHs) still remain elusive. Repeated mergers of binary BHs, detectable via gravitational-wave emission with the current LIGO/Virgo/Kagra interferometers and future detectors such as LISA or the Einstein Telescope, can form both mass-gap BHs and IMBHs. Here we explore the possibility that mass-gap BHs and IMBHs are born as a result of successive BH mergers in dense star clusters. In particular, nuclear star clusters at the centers of galaxies have deep enough potential wells to retain most of the BH merger products after they receive significant recoil kicks due to anisotropic emission of gravitational radiation. Using for the first time simulations that include full stellar evolution, we show that a massive stellar BH seed can easily grow to ∼10 3 –10 4 M ⊙ as a result of repeated mergers with other smaller BHs. We find that lowering the cluster metallicity leads to larger final BH masses. We also show that the growing BH spin tends to decrease in magnitude with the number of mergers so that a negative correlation exists between the final mass and spin of the resulting IMBHs. Assumptions about the birth spins of stellar BHs affect our results significantly, with low birth spins leading to the production of a larger population of massive BHs. 
    more » « less
  3. ABSTRACT

    The identification of the first confirmed neutron star–black hole (NS-BH) binary mergers by the LIGO, Virgo, and KAGRA collaboration provides the opportunity to investigate the properties of the early sample of confirmed and candidate events. Here, we focus primarily on the tilt angle of the BH’s spin relative to the orbital angular momentum vector of the binary, and the implications for the physical processes that determine this tilt. The posterior tilt distributions of GW200115 and the candidate events GW190426_152155 and GW190917_114630 peak at significantly anti-aligned orientations (though display wide distributions). Producing these tilts through isolated binary evolution would require stronger natal kicks than are typically considered (and preferentially polar kicks would be ruled out), and/or an additional source of tilt such as stable mass transfer. The early sample of NS-BH events are less massive than expected for classical formation channels, and may provide evidence for efficient mass transfer that results in the merger of more massive NS-BH binaries before their evolution to the compact phase is complete. We predict that future gravitational-wave detections of NS-BH events will continue to display total binary masses of ≈7 M⊙ and mass ratios of q ∼ 3 if this interpretation is correct. Conversely, the high mass of the candidate GW191219_163120 suggests a dynamical capture origin. Large tilts in a significant fraction of merging NS-BH systems would weaken the prospects for electromagnetic detection. However, EM observations, including non-detections, can significantly tighten the constraints on spin and mass ratio.

     
    more » « less
  4. null (Ed.)
    Our understanding of the formation and evolution of binary black holes (BBHs) is significantly impacted by the recent discoveries made by the LIGO/Virgo collaboration. Of utmost importance is the detection of the most massive BBH system, GW190521. Here we investigate what it takes for field massive stellar binaries to account for the formation of such massive BBHs. Whether the high mass end of the BH mass function is populated by remnants of massive stars that either formed at extremely low metallicities and avoid the pair-instability mass gap or increase their birth mass beyond the pair-instability mass gap through the accretion of gas from the surrounding medium. We show that assuming that massive stars at very low metallicities can form massive BHs by avoiding pair-instability supernova, coupled with a correspondingly high formation efficiency for BBHs, can explain the observed BH mass function. To this end, one requires a relation between the initial and final mass of the progenitor stars at low metallicities that is shallower than what is expected from wind mass loss alone. On the other hand, assuming pair-instability operates at all metallicities, one can account for the observed BH mass function if at least about 10% of the BHs born at very low metallicities double their mass before they merge because of accretion of ambient gas. Such BBHs will have to spend about a Gyr within a parsec length-scale of their parent atomic cooling halos or a shorter timescale if they reside in the inner sub-parsecs of their host dark matter halos. Future stellar evolution calculations of massive stars at very low metallicity and hydrodynamical simulations of gas accretion onto BBHs born in atomic cooling halos can shed light on this debate. 
    more » « less
  5. Intermediate-mass black holes (IMBHs) span the approximate mass range 100−10 5   M ⊙ , between black holes (BHs) that formed by stellar collapse and the supermassive BHs at the centers of galaxies. Mergers of IMBH binaries are the most energetic gravitational-wave sources accessible by the terrestrial detector network. Searches of the first two observing runs of Advanced LIGO and Advanced Virgo did not yield any significant IMBH binary signals. In the third observing run (O3), the increased network sensitivity enabled the detection of GW190521, a signal consistent with a binary merger of mass ∼150  M ⊙ providing direct evidence of IMBH formation. Here, we report on a dedicated search of O3 data for further IMBH binary mergers, combining both modeled (matched filter) and model-independent search methods. We find some marginal candidates, but none are sufficiently significant to indicate detection of further IMBH mergers. We quantify the sensitivity of the individual search methods and of the combined search using a suite of IMBH binary signals obtained via numerical relativity, including the effects of spins misaligned with the binary orbital axis, and present the resulting upper limits on astrophysical merger rates. Our most stringent limit is for equal mass and aligned spin BH binary of total mass 200  M ⊙ and effective aligned spin 0.8 at 0.056 Gpc −3 yr −1 (90% confidence), a factor of 3.5 more constraining than previous LIGO-Virgo limits. We also update the estimated rate of mergers similar to GW190521 to 0.08 Gpc −3 yr −1 . 
    more » « less