skip to main content

Title: Phase-locked terahertz plasmonic laser array with 2  W output power in a single spectral mode

Plasmonic lasers suffer from low output power and divergent beams due to their subwavelength metallic cavities. We developed a phase-locking scheme for such lasers to significantly enhance their radiative efficiency and beam quality. An array of metallic microcavities is longitudinally coupled through traveling plasmon waves, which leads to radiation in a single spectral mode and a diffraction limited single-lobed beam in the surface normal direction. We implemented our scheme for terahertz plasmonic quantum-cascade lasers (QCLs) and measured peak output power in excess of2Wfor a single-mode3.3THzQCL radiating in a narrow single-lobed beam, when operated at58Kin a compact Stirling cooler. We thereby demonstrated an order of magnitude increase in power and thirty-times higher average intensity for monolithic single-mode terahertz QCLs compared to prior work. The number of photons radiated from the cavity outnumber those absorbed within its claddings and semiconductor medium, which constitutes><#comment/>50%<#comment/>radiative efficiency and is significantly greater than that achieved for previous single-mode mid-infrared or terahertz QCLs.

; ;
Publication Date:
Journal Name:
Page Range or eLocation-ID:
Article No. 708
Optical Society of America
Sponsoring Org:
National Science Foundation
More Like this
  1. Wavelength beam-combining of four terahertz (THz) distributed-feedback quantum-cascade lasers (QCLs) is demonstrated using low-cost THz components that include a lens carved out of a plastic ball and a mechanically fabricated blazed grating. Single-lobed beams from predominantly single-mode QCLs radiating peak power in the range of50−<#comment/>170mWare overlapped in the far field at frequencies ranging from3.31−<#comment/>3.54THz. Collinear propagation with a maximum angular deviation of0.3∘<#comment/>is realized for the four beams. The total power efficiency for the focused and beam-combined radiation is as high as25%<#comment/>. This result could pave the way for future commercialization of beam-combined monolithic THz QCL arrays for multi-spectral THz sensing and spectroscopy at standoff distances.

  2. Electro-optic quantum coherent interfaces map the amplitude and phase of a quantum signal directly to the phase or intensity of a probe beam. At terahertz frequencies, a fundamental challenge is not only to sense such weak signals (due to a weak coupling with a probe in the near-infrared) but also to resolve them in the time domain. Cavity confinement of both light fields can increase the interaction and achieve strong coupling. Using this approach, current realizations are limited to low microwave frequencies. Alternatively, in bulk crystals, electro-optic sampling was shown to reach quantum-level sensitivity of terahertz waves. Yet, the coupling strength was extremely weak. Here, we propose an on-chip architecture that concomitantly provides subcycle temporal resolution and an extreme sensitivity to sense terahertz intracavity fields below 20 V/m. We use guided femtosecond pulses in the near-infrared and a confinement of the terahertz wave to a volume ofVTHz∼<#comment/>10−<#comment/>9(λ<#comment/>THz/2)3in combination with ultraperformant organic molecules (r33=170pm/V) and accomplish a record-high single-photon electro-optic coupling rate ofgeo=2π<#comment/>×<#comment/>0.043Gmore »mathvariant='normal'>Hz, 10,000 times higher than in recent reports of sensing vacuum field fluctuations in bulk media. Via homodyne detection implemented directly on chip, the interaction results into an intensity modulation of the femtosecond pulses. The single-photon cooperativity isC0=1.6×<#comment/>10−<#comment/>8, and the multiphoton cooperativity isC=0.002at room temperature. We show><#comment/>70dBdynamic range in intensity at 500 ms integration under irradiation with a weak coherent terahertz field. Similar devices could be employed in future measurements of quantum states in the terahertz at the standard quantum limit, or for entanglement of subsystems on subcycle temporal scales, such as terahertz and near-infrared quantum bits.

    « less
  3. In terahertz (THz) photonics, there is an ongoing effort to develop thin, compact devices such as dielectric photonic crystal (PhC) slabs with desirable light–matter interactions. However, previous works in THz PhC slabs have been limited to rigid substrates with thicknesses∼<#comment/>100sof micrometers. Dielectric PhC slabs have been shown to possess in-plane modes that are excited by external radiation to produce sharp guided-mode resonances with minimal absorption for applications in sensors, optics, and lasers. Here we confirm the existence of guided resonances in a membrane-type THz PhC slab with subwavelength (λ<#comment/>0/6−<#comment/>λ<#comment/>0/12) thicknesses of flexible dielectric polyimide films. The transmittance of the guided resonances was measured for different structural parameters of the unit cell. Furthermore, we exploited the flexibility of the samples to modulate the guided modes for a bend angle ofθ<#comment/>≥<#comment/>5∘<#comment/>, confirmed experimentally by the suppression of these modes. The mechanical flexibility of the device allows for an additional degree of freedom in system design for high-speed communications, soft wearable photonics, and implantable medical devices.

  4. In this Letter, we present a high extinction ratio and compact on-chip polarization beam splitter (PBS), based on an extreme skin-depth (eskid) waveguide. Subwavelength-scale gratings form an effectively anisotropic metamaterial cladding and introduce a large birefringence. The anisotropic dielectric perturbation of the metamaterial cladding suppresses the TE polarization extinction via exceptional coupling, while the large birefringence efficiently cross-couples the TM mode, thus reducing the coupling length. We demonstrated the eskid-PBS on a silicon-on-insulator platform and achieved an ultra-high extinction ratio PBS (≈<#comment/>60dBfor TE and≈<#comment/>48dBfor TM) with a compact coupling length (≈<#comment/>14.5µ<#comment/>m). The insertion loss is also negligible (<<#comment/>0.6dB). The bandwidth is><#comment/>80(30) nm for the TE (TM) extinction ratio><#comment/>20dB. Our ultra-high extinction ratio PBS is crucial in implementing efficient polarization diversity circuits, especially where a high degree of polarization distinguishability is necessary, such as photonic quantum information processing.

  5. We present a compact heterodyne laser interferometer developed for high-sensitivity displacement sensing applications. This interferometer consists of customized prisms and wave plates assembled as a quasi-monolithic unit to realize a miniaturized system. The interferometer design adopts a common-mode rejection scheme to provide a high rejection ratio to common environmental noise. Experimental tests in vacuum show a displacement sensitivity level of11pm/Hzat100mHzand as low as0.6pm/Hzabove1pm. The prototype unit is20mm×<#comment/>20mm×<#comment/>10mmin size and weighs4.5g, allowing subsequent integration in compact systems.