skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


Title: A graphene oxide-based fluorescence assay for the sensitive detection of DNA exonuclease enzymatic activity
The 3′–5′ exonuclease enzyme plays a dominant role in multiple pivotal physiological activities, such as DNA replication and repair processes. In this study, we designed a sensitive graphene oxide (GO)-based probe for the detection of exonuclease enzymatic activity. In the absence of Exo III, the strong π–π interaction between the fluorophore-tagged DNA and GO causes the efficient fluorescence quenching via a fluorescence resonance energy transfer (FRET). In contrast, in the presence of Exo III, the fluorophore-tagged 3′-hydroxyl termini of the DNA probe was digested by Exo III to set the fluorophore free from adsorption when GO was introduced, causing an inefficient fluorescence quenching. As a result, the fluorescence intensity of the sensor was found to be proportional to the concentration of Exo III; towards the detection of Exo III, this simple GO-based probe demonstrated a highly sensitive and selective linear response in the low detection range from 0.01 U mL −1 to 0.5 U mL −1 and with the limit of detection (LOD) of 0.001 U mL −1 . Compared with other fluorescent probes, this assay exhibited superior sensitivity and selectivity in both buffer and fetal bovine serum samples, in addition to being cost effective and having a simple setup.  more » « less
Award ID(s):
1709160
PAR ID:
10161040
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
The Analyst
Volume:
144
Issue:
21
ISSN:
0003-2654
Page Range / eLocation ID:
6231 to 6239
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A sensitive label-free fluorescence assay for monitoring T4 polynucleotide kinase (T4 PNK) activity and inhibition was developed based on a coupled λ exonuclease cleavage reaction and SYBR Green I. In this assay, a double-stranded DNA (dsDNA) was stained with SYBR Green I and used as a substrate for T4 PNK. After the 5′-hydroxyl termini of the dsDNA was phosphorylated by the T4 PNK, the coupled λ exonuclease began to digest the dsDNA to form mononucletides and single-stranded DNA (ssDNA). At this moment, the fluorescence intensity of the SYBR Green I decreased because of less affinity with ssDNA than dsDNA. The decreasing extent was proportional to the concentration of the T4 PNK. After optimization of the detection conditions, including the concentration of ATP, amount of λ exonuclease and reaction time, the activity of T4 PNK was monitored by the fluorescence measurement, with the limit of detection of 0.11 U mL −1 and good linear correlation between 0.25–1.00 U mL −1 ( R 2 = 0.9896). In this assay, no label was needed for fluorescence detection. Moreover, the inhibition behaviors of the T4 PNK's inhibitors were evaluated by this assay. The result indicated the potential of using this assay for monitoring of the phosphorylation-related process. 
    more » « less
  2. Extensive research is focused on the development of highly sensitive, rapid on-site diagnostic devices. The lateral flow strip (LFS) is a paper-based point-of-care diagnostic device, which is highly promising because of its ease of use and low cost. Despite these advantages, LFS device is still less popular than other methods such as enzyme-linked immunosorbent assay (ELISA) or real-time polymerase chain reaction (qPCR) due to its low sensitivity. Here, we have developed a fluorescence-based lateral flow strip (f-LFS) device for DNA detection using a molecular beacon (MB), a short hairpin-forming DNA strand tagged with a fluorophore-quencher pair. Each paper and membrane component of f-LFS device was carefully selected based on their physicochemical properties including porosity, surface functionality, and autofluorescence. The limit of detection (LOD) of this device was substantially improved to 2.1 fg/mL by adding MgCl 2 to the reaction buffer and narrowing the test membrane dimension. Also, a portable fluorescence detection system for f-LFS was developed using a multi-pixel photon counter (MPPC), a sensitive detector detecting the signal on site. We anticipate that this highly sensitive paper-based diagnostic device can be utilized for on-site diagnosis of various diseases. 
    more » « less
  3. Abstract

    Proofreading by replicative DNA polymerases is a fundamental mechanism ensuring DNA replication fidelity. In proofreading, mis-incorporated nucleotides are excised through the 3′-5′ exonuclease activity of the DNA polymerase holoenzyme. The exonuclease site is distal from the polymerization site, imposing stringent structural and kinetic requirements for efficient primer strand transfer. Yet, the molecular mechanism of this transfer is not known. Here we employ molecular simulations using recent cryo-EM structures and biochemical analyses to delineate an optimal free energy path connecting the polymerization and exonuclease states ofE. colireplicative DNA polymerase Pol III. We identify structures for all intermediates, in which the transitioning primer strand is stabilized by conserved Pol III residues along the fingers, thumb and exonuclease domains. We demonstrate switching kinetics on a tens of milliseconds timescale and unveil a complete pol-to-exo switching mechanism, validated by targeted mutational experiments.

     
    more » « less
  4. G-quadruplexes (GQs), spatial assemblies of guanine-rich DNA strands, play an important role in the regulation of gene expression and chromosome stabilization. These structures are recognized to be useful in cancer therapies as the presence of multiple G-quadruplexes in a telomeric strand stops cancer cell proliferation. Metallacrowns of the type 12-MC-4 form planar structures that have remarkable similarity to G-tetrads in terms of dimension, shape and the ability to bind alkali metal and lanthanide cations in a central cavity. The interaction between the Sm( iii )[12-MC Ga(III)shi -4] (SmMC) metallacrown (MC) and human telomeric G-quadruplex structures was examined using several methods including CD titrations, CD melting temperatures, fluorescence titration of SmMC with GQ/Na + , fluorescence intercalator displacement (FID) assays and methods measuring the MC quenching effect on the Tb 3+ /GQ luminescence. It was proven that the studied metallacrown acted as a sensing probe and interacted with quadruplex DNA. The Stern–Volmer quenching constant ( K as ) of Tb 3+ /GQ luminescence was calculated to be 3.9 × 10 5 M −1 . The binding constant using the indirect FID method gave the result of 1.3 × 10 5 M −1 . CD melting temperature experiments reveal the following pattern – the higher the concentration of the complex the lower the registered T m for quadruplex DNA, which indicates a destabilizing effect of SmMC at higher GQ : MC ratios. These data implicate a shape and size selective interaction between MCs and GQs that may be exploited for telomere detection. 
    more » « less
  5. Abstract

    Despite fluorescent quenching with graphene oxide (GO) having shown great success in various applications ‐ bioluminescent quenching has not yet been demonstrated using GO as a quencher. To explore the ability of GO to quench bioluminescence, we usedGaussialuciferase (Gluc) as a donor and GO as a quencher and demonstrated its application in sensing of two target analytes, HIV‐1 DNA and IFN‐γ. We demonstrated that the incubation of Gluc conjugated HIV‐1 and IFN‐γ oligonucleotide probes with GO provided for monitoring of probe‐target interactions based on bioluminescence measurement in a solution phase sensing system. The limits of detection obtained for IFN‐γ and HIV‐1 DNA detection were 17 nM and 7.59 nM, respectively. Both sensing systems showed selectivity toward the target analyte. The detection of IFN‐γ in saliva matrix was demonstrated. The use of GO as a quencher provides for high sensitivity while maintaining the selectivity of designed probes to their respective targets. The use of GO as a quencher provides for an easy assay design and low cost, environmentally friendly reporter.

     
    more » « less