Alzheimer’s disease (AD) includes the formation of extracellular deposits comprising aggregated β-amyloid (Aβ) fibers associated with oxidative stress, inflammation, mitochondrial abnormalities, and neuronal loss. There is an associative link between AD and cardiac diseases; however, the mechanisms underlying the potential role of AD, particularly Aβ in cardiac cells, remain unknown. Here, we investigated the role of mitochondria in mediating the effects of Aβ1-40 and Aβ1-42 in cultured cardiomyocytes and primary coronary endothelial cells. Our results demonstrated that Aβ1-40 and Aβ1-42 are differently accumulated in cardiomyocytes and coronary endothelial cells. Aβ1-42 had more adverse effects than Aβ1-40 on cell viability and mitochondrial function in both types of cells. Mitochondrial and cellular ROS were significantly increased, whereas mitochondrial membrane potential and calcium retention capacity decreased in both types of cells in response to Aβ1-42. Mitochondrial dysfunction induced by Aβ was associated with apoptosis of the cells. The effects of Aβ1-42 on mitochondria and cell death were more evident in coronary endothelial cells. In addition, Aβ1-40 and Aβ1-42 significantly increased Ca2+ -induced swelling in mitochondria isolated from the intact rat hearts. In conclusion, this study demonstrates the toxic effects of Aβ on cell survival and mitochondria function in cardiac cells. 
                        more » 
                        « less   
                    
                            
                            Effects of silica nanoparticles on endolysosome function in primary cultured neurons
                        
                    
    
            Silica nanoparticles (SiNPs) have been used as vehicles for drug delivery, molecular detection, and cellular manipulations in nanoneuromedicine. SiNPs may cause adverse effects in the brain including neurotoxicity, neuroinflammation, neurodegeneration, and enhancing levels of amyloid beta (Aβ) protein—all pathological hallmarks of Alzheimer’s disease. Therefore, the extent to which SiNPs influence Aβ generation and the underlying mechanisms by which this occurs deserve investigation. Our studies were focused on the effects of SiNPs on endolysosomes which uptake, traffic, and mediate the actions of SiNPs. These organelles are also where amyloidogenesis largely originates. We found that SiNPs, in primary cultured hippocampal neurons, accumulated in endolysosomes and caused a rapid and persistent deacidification of endolysosomes. SiNPs significantly reduced endolysosome calcium stores as indicated by a significant reduction in the ability of the lysosomotropic agent glycyl-l-phenylalanine 2-naphthylamide (GPN) to release calcium from endolysosomes. SiNPs increased Aβ 1–40 secretion, whereas 2 agents that acidified endolysosomes, ML-SA1 and CGS21680, blocked SiNP-induced deacidification and increased generation of Aβ 1–40 . Our findings suggest that SiNP-induced deacidification of and calcium release from endolysosomes might be mechanistically linked to increased amyloidogenesis. The use of SiNPs might not be the best nanomaterial for therapeutic strategies against Alzheimer’s disease and other neurological disorders linked to endolysosome dysfunction. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1709160
- PAR ID:
- 10161119
- Date Published:
- Journal Name:
- Canadian Journal of Physiology and Pharmacology
- Volume:
- 97
- Issue:
- 4
- ISSN:
- 0008-4212
- Page Range / eLocation ID:
- 297 to 305
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Amyloid-β (Aβ) peptide aggregation plays a central role in the progress of Alzheimer’s disease (AD), of which Aβ-deposited extracellular amyloid plaques are a major hallmark. The brain micro-environmental variation in AD patients, like local acidification, increased ionic strength, or changed metal ion levels, cooperatively modulates the aggregation of the Aβ peptides. Here, we investigate the multivariate effects of varied pH, ionic strength and Zn 2+ on Aβ 40 fibrillation kinetics. Our results reveal that Aβ fibrillation kinetics are strongly affected by pH and ionic strength suggesting the importance of electrostatic interactions in regulating Aβ 40 fibrillation. More interestingly, the presence of Zn 2+ ions can further alter or even reserve the role of pH and ionic strength on the amyloid fibril kinetics, suggesting the importance of amino acids like Histidine that can interact with Zn 2+ ions. Both pH and ionic strength regulate the secondary nucleation processes, however regardless of pH and Zn 2+ ions, ionic strength can also modulate the morphology of Aβ 40 aggregates. These multivariate effects in bulk solution provide insights into the correlation of pH-, ionic strength- or Zn 2+ ions changes with amyloid deposits in AD brain and will deepen our understanding of the molecular pathology in the local brain microenvironment.more » « less
- 
            Tavernarakis, Nektarios (Ed.)Amyloid β (Aβ) is a peptide known for its characteristic aggregates in Alzheimer’s Disease and its ability to induce a wide range of detrimental effects in various model systems. However, Aβ has also been shown to induce some beneficial effects, such as antimicrobial properties against pathogens. In this work, we explore the influence of Aβ in stress resistance in aC. elegansmodel of Alzheimer’s Disease. We found thatC. elegansthat express human Aβ exhibit increased resistance to heat and anoxia, but not to oxidative stress. This beneficial effect of Aβ was driven from Aβ in neurons, where the level of induction of Aβ expression correlated with stress resistance levels. Transcriptomic analysis revealed that this selective stress resistance was mediated by the Heat Shock Protein (HSPs) family of genes. Furthermore, neuropeptide signaling was necessary for Aβ to induce stress resistance, suggesting neuroendocrine signaling plays a major role in activating organismal stress response pathways. These results highlight the potential beneficial role of Aβ in cellular function, as well as its complex effects on cellular and organismal physiology that must be considered when usingC. elegansas a model for Alzheimer’s Disease.more » « less
- 
            Understanding the structural mechanism by which proteins and peptides aggregate is crucial, given the role of fibrillar aggregates in debilitating amyloid diseases and bioinspired materials. Yet, this is a major challenge as the assembly involves multiple heterogeneous and transient intermediates. Here, we analyze the co-aggregation of Aβ 40 and Aβ 16–22 , two widely studied peptide fragments of Aβ 42 implicated in Alzheimer’s disease. We demonstrate that Aβ 16–22 increases the aggregation rate of Aβ 40 through a surface-catalyzed secondary nucleation mechanism. Discontinuous molecular dynamics simulations allowed aggregation to be tracked from the initial random coil monomer to the catalysis of nucleation on the fibril surface. Together, the results provide insight into how dynamic interactions between Aβ 40 monomers/oligomers on the surface of preformed Aβ 16–22 fibrils nucleate Aβ 40 amyloid assembly. This new understanding may facilitate development of surfaces designed to enhance or suppress secondary nucleation and hence to control the rates and products of fibril assembly.more » « less
- 
            Alzheimer’s disease (AD) is the most common type of dementia and is listed as the sixth-leading cause of death in the United States. Recent findings have linked AD to the aggregation of amyloid beta peptides (Aβ), a proteolytic fragment of 39–43 amino acid residues derived from the amyloid precursor protein. AD has no cure; thus, new therapies to stop the progression of this deadly disease are constantly being searched for. In recent years, chaperone-based medications from medicinal plants have gained significant interest as an anti-AD therapy. Chaperones are responsible for maintaining the three-dimensional shape of proteins and play an important role against neurotoxicity induced by the aggregation of misfolded proteins. Therefore, we hypothesized that proteins extracted from the seeds of Artocarpus camansi Blanco (A. camansi) and Amaranthus dubius Mart. ex Thell (A. dubius) could possess chaperone activity and consequently may exhibit a protective effect against Aβ1–40-induced cytotoxicity. To test this hypothesis, the chaperone activity of these protein extracts was measured using the enzymatic reaction of citrate synthase (CS) under stress conditions. Then, their ability to inhibit the aggregation of Aβ1–40 using a thioflavin T (ThT) fluorescence assay and DLS measurements was determined. Finally, the neuroprotective effect against Aβ1–40 in SH-SY5Y neuroblastoma cells was evaluated. Our results demonstrated that A. camansi and A. dubius protein extracts exhibited chaperone activity and inhibited Aβ1–40 fibril formation, with A. dubius showing the highest chaperone activity and inhibition at the concentration assessed. Additionally, both protein extracts showed neuroprotective effects against Aβ1–40-induced toxicity. Overall, our data demonstrated that the plant-based proteins studied in this research work can effectively overcome one of the most important characteristics of AD.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    