skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Numerical Solutions of Nonlinear Ordinary Differential Equations by Using Adaptive Runge-Kutta Method
We present a study on numerical solutions of nonlinear ordinary differential equations by applying Runge-Kutta-Fehlberg (RKF) method, a well-known adaptive Runge-kutta method. The adaptive Runge-kutta methods use embedded integration formulas which appear in pairs. Typically adaptive methods monitor the truncation error at each integration step and automatically adjust the step size to keep the error within prescribed limit. Numerical solutions to different nonlinear initial value problems (IVPs) attained by RKF method are compared with corresponding classical Runge-Kutta (RK4) approximations in order to investigate the computational superiority of the former. The resulting gain in efficiency is compatible with the theoretical prediction. Moreover, with the aid of a suitable time-stepping scheme, we show that the RKF method invariably requires less number of steps to arrive at the right endpoint of the finite interval where the IVP is being considered.  more » « less
Award ID(s):
1800798
PAR ID:
10161150
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
JOURNAL OF ADVANCES IN MATHEMATICS
Volume:
17
ISSN:
2347-1921
Page Range / eLocation ID:
147 to 154
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract We introduce a new class of Runge–Kutta type methods suitable for time stepping to propagate hyperbolic solutions within tent-shaped spacetime regions. Unlike standard Runge–Kutta methods, the new methods yield expected convergence properties when standard high order spatial (discontinuous Galerkin) discretizations are used. After presenting a derivation of nonstandard order conditions for these methods, we show numerical examples of nonlinear hyperbolic systems to demonstrate the optimal convergence rates. We also report on the discrete stability properties of these methods applied to linear hyperbolic equations. 
    more » « less
  2. While implicit Runge–Kutta (RK) methods possess high order accuracy and important stability properties, implementation difficulties and the high expense of solving the coupled algebraic system at each time step are frequently cited as impediments. We present Irksome , a high-level library for manipulating UFL (Unified Form Language) expressions of semidiscrete variational forms to obtain UFL expressions for the coupled Runge–Kutta stage equations at each time step. Irksome works with the Firedrake package to enable the efficient solution of the resulting coupled algebraic systems. Numerical examples confirm the efficacy of the software and our solver techniques for various problems. 
    more » « less
  3. This paper studies the spatial manifestations of order reduction that occur when timestepping initial-boundary-value problems (IBVPs) with high-order Runge–Kutta methods. For such IBVPs, geometric structures arise that do not have an analog in ODE IVPs: boundary layers appear, induced by a mismatch between the approximation error in the interior and at the boundaries. To understand those boundary layers, an analysis of the modes of the numerical scheme is conducted, which explains under which circumstances boundary layers persist over many time steps. Based on this, two remedies to order reduction are studied: first, a new condition on the Butcher tableau, called weak stage order, that is compatible with diagonally implicit Runge–Kutta schemes; and second, the impact of modified boundary conditions on the boundary layer theory is analyzed. 
    more » « less
  4. Ong, B.; Schroder, J.; Shipton, J.; Friedhoff, S (Ed.)
    Parareal is a widely studied parallel-in-time method that can achieve meaningful speedup on certain problems. However, it is well known that the method typically performs poorly on non-diffusive equations. This paper analyzes linear stability and convergence for IMEX Runge-Kutta Parareal methods on non-diffusive equations. By combining standard linear stability analysis with a simple convergence analysis, we find that certain Parareal configurations can achieve parallel speedup on non-diffusive equations. These stable configurations possess low iteration counts, large block sizes, and a large number of processors. Numerical examples using the nonlinear Schrödinger equation demonstrate the analytical conclusions. 
    more » « less
  5. Abstract We present a class of high-order Eulerian–Lagrangian Runge–Kutta finite volume methods that can numerically solve Burgers’ equation with shock formations, which could be extended to general scalar conservation laws. Eulerian–Lagrangian (EL) and semi-Lagrangian (SL) methods have recently seen increased development and have become a staple for allowing large time-stepping sizes. Yet, maintaining relatively large time-stepping sizes post shock formation remains quite challenging. Our proposed scheme integrates the partial differential equation on a space-time region partitioned by linear approximations to the characteristics determined by the Rankine–Hugoniot jump condition. We trace the characteristics forward in time and present a merging procedure for the mesh cells to handle intersecting characteristics due to shocks. Following this partitioning, we write the equation in a time-differential form and evolve with Runge–Kutta methods in a method-of-lines fashion. High-resolution methods such as ENO and WENO-AO schemes are used for spatial reconstruction. Extension to higher dimensions is done via dimensional splitting. Numerical experiments demonstrate our scheme’s high-order accuracy and ability to sharply capture post-shock solutions with large time-stepping sizes. 
    more » « less