skip to main content

Title: Bark beetle mycobiome: collaboratively defined research priorities on a widespread insect-fungus symbiosis
One of the main threats to forests in the Anthropocene are novel or altered interactions among trees, insects and fungi. To critically assess the contemporary research on bark beetles, their associated fungi, and their relationships with trees, the international Bark Beetle Mycobiome research coordination network has been formed. The network comprises 22 researchers from 17 institutions. This forward-looking review summarizes the group’s assessment of the current status of the bark beetle mycobiome research field and priorities for its advancement. Priorities include data mobility and standards, the adoption of new technologies for the study of these symbioses, reconciliation of conflicting paradigms, and practices for robust inference of symbiosis and tree epidemiology. The Net work proposes contemporary communication strategies to interact with the global community of researchers studying symbioses and natural resource managers. We conclude with a call to the broader scientific community to participate in the network and contribute their perspectives.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Bark and ambrosia beetles are highly specialized weevils (Curculionidae) that have established diverse symbioses with fungi, most often from the order Ophiostomatales (Ascomycota, Sordariomycetes). The two types of beetles are distinguished by their feeding habits and intimacy of interactions with their symbiotic fungi. The tree tissue diet of bark beetles is facilitated by fungi, while ambrosia beetles feed solely on fungi that they farm. The farming life history strategy requires domestication of a fungus, which the beetles consume as their sole food source. Ambrosia beetles in the subfamily Platypodinae originated in the mid‐Cretaceous (119–88 Ma) and are the oldest known group of farming insects. However, attempts to resolve phylogenetic relationships and the timing of domestication events for fungal cultivars have been largely inconclusive. We sequenced the genomes of 12 ambrosia beetle fungal cultivars and bark beetle associates, including the devastating laurel wilt pathogen,Raffaelea lauricola, to estimate a robust phylogeny of the Ophiostomatales. We find evidence for contemporaneous diversification of the beetles and their associated fungi, followed by three independent domestication events of the ambrosia fungi genusRaffaelea. We estimate the first domestication of an Ophiostomatales fungus occurred ~86 Ma, 25 million years earlier than prior estimates and in close agreement with the estimated age of farming in the Platypodinae (96 Ma). Comparisons of the timing of fungal domestication events with the timing of beetle radiations support the hypothesis that the first large beetle radiations may have spread domesticated “ambrosia” fungi to other fungi‐associated beetle groups, perhaps facilitating the evolution of new farming lineages.

    more » « less
  2. To better understand functional ecology of bark beetle-microbial symbioses, we characterized yeast associates of North American spruce beetle (Dendroctous rufipennis Kirby) across populations. Seven yeast species were detected; Wickerhamomyces canadensis (Wickerham) Kurtzman et al. (Sachharomycetales: Saccharomycetaceae) was the most common (74% of isolates) and found in all populations. Isolates of W. canadensis were subsequently tested for competitive interactions with symbiotic (Leptographium abietinum, = Grosmannia abietina) and pathogenic (Beauvaria bassiana) filamentous fungi, and isolates were nutritionally profiled (protein and P content). Exposure to yeast headspace emissions had isolate-dependent effects on colony growth of symbiotic and pathogenic fungi; most isolates of W. canadensis slightly inhibited growth rates of symbiotic (L. abietinum, mean effect: − 4%) and entomopathogenic (B. bassiana, mean effect: − 6%) fungi. However, overall variation was high (range: − 35.4 to + 88.6%) and some yeasts enhanced growth of filamentous fungi whereas others were consistently inhibitory. The volatile 2-phenylethanol was produced by W. canadensis and synthetic 2-phenylethanol reduced growth rates of both L. abietinum and B. bassiana by 36% on average. Mean protein and P content of Wickerhamomyces canadensis cultures were 0.8% and 7.2%, respectively, but isolates varied in nutritional content and protein content was similar to that of host tree phloem. We conclude that W. canadensis is a primary yeast symbiont of D. rufipennis in the Rocky Mountains and emits volatiles that can affect growth of associated microbes. Wickerhamomyces canadensis isolates vary substantially in limiting nutrients (protein and P), but concentrations are less than reported for the symbiotic filamentous fungus L. abietinum. 
    more » « less
  3. Hajek, Ann (Ed.)
    Abstract Bark beetles and root weevils can impact forests through tree death on landscape scales. Recently, subterranean termites have been linked to these beetles via the presence of bluestain fungi (Ascomycota: Ophiostomataceae), which are vectored to trees by beetles. However, only a small subset of bluestain species have been examined. Here, we tested whether termite-bluestain association patterns in the field reflect termite feeding preference in laboratory choice trials. We documented the presence of four bluestain fungi (Leptographium procerum (W.B. Kendr.), L. terebrantis (Barras & Perry), Grosmannia huntii (Rob.-Jeffr.), and G. alacris (T.A. Duong, Z.W. de Beer & M.J. Wingf.) in the roots of 2,350 loblolly pine trees in the southeastern United States and whether termites were present or absent on these roots and paired this with laboratory choice feeding trials. Termites were found 2.5-fold on tree roots with at least one bluestain fungus present than tree roots without bluestain fungi. Although termites in this study and others were associated with L. procerum, L. terebrantis, and marginally G. huntii, termites only showed preferential feeding on wood inoculated with G. huntii in laboratory trials. This suggests that increased termite presence on wood with bluestain fungi may be driven by factors other than increased wood palatability. Termites could thus disproportionately affect wood turnover rates for specific pools (e.g., bark beetle and root weevil attacked trees) and in some cases (e.g., G. huntii) accelerate wood decomposition. This study supports the growing evidence that the association between subterranean termites and bluestain fungi is spatially and taxonomically widespread. 
    more » « less
  4. Morels ( Morchella spp.) are iconic edible mushrooms with a long history of human consumption. Some microbial taxa are hypothesized to be important in triggering the formation of morel primordia and development of fruiting bodies, thus, there is interest in the microbial ecology of these fungi. To identify and compare fungal and prokaryotic communities in soils where Morchella sextelata is cultivated in outdoor greenhouses, ITS and 16S rDNA high throughput amplicon sequencing and microbiome analyses were performed. Pedobacter , Pseudomonas , Stenotrophomonas , and Flavobacterium were found to comprise the core microbiome of M. sextelata ascocarps. These bacterial taxa were also abundant in the soil beneath growing fruiting bodies. A total of 29 bacterial taxa were found to be statistically associated to Morchella fruiting bodies. Bacterial community network analysis revealed high modularity with some 16S rDNA operational taxonomic unit clusters living in specialized fungal niches (e.g., pileus, stipe). Other fungi dominating the soil mycobiome beneath morels included Morchella , Phialophora , and Mortierella . This research informs understanding of microbial indicators and potential facilitators of Morchella ecology and fruiting body production. 
    more » « less
  5. Abstract

    Mycorrhizal mutualisms are nearly ubiquitous across plant communities. Yet, it is still unknown whether facilitation among plants arises primarily from these mycorrhizal networks or from physical and ecological attributes of plants themselves. Here, we tested the relative contributions of mycorrhizae and plants to both positive and negative biotic interactions to determine whether plant–soil feedbacks with mycorrhizae neutralize competition and enemies within multitrophic forest community networks. We used Bayesian hierarchical generalized linear modeling to examine mycorrhizal‐guild‐specific and mortality‐cause‐specific woody plant survival compiled from a spatially and temporally explicit data set comprising 101,096 woody plants from three mixed‐conifer forests across western North America. We found positive plant–soil feedbacks for large‐diameter trees: species‐rich woody plant communities indirectly promoted large tree survival when connected via mycorrhizal networks. Shared mycorrhizae primarily counterbalanced apparent competition mediated by tree enemies (e.g., bark beetles, soil pathogens) rather than diffuse competition between plants. We did not find the same survival benefits for small trees or shrubs. Our findings suggest that lower large‐diameter tree mortality susceptibility in species‐rich temperate forests resulted from greater access to shared mycorrhizal networks. The interrelated importance of aboveground and belowground biodiversity to large tree survival may be critical for counteracting increasing pathogen, bark beetle, and density threats.

    more » « less