skip to main content


Title: Magnitudes and Spatial Patterns of Interdecadal Temperature Variability in CMIP6
Abstract

Attribution and prediction of global and regional warming requires a better understanding of the magnitude and spatial characteristics of internal global mean surface air temperature (GMST) variability. We examine interdecadal GMST variability in Coupled Modeling Intercomparison Projects, Phases 3, 5, and 6 (CMIP3, CMIP5, and CMIP6) preindustrial control (piControl), last millennium, and historical simulations and in observational data. We find that several CMIP6 simulations show more GMST interdecadal variability than the previous generations of model simulations. Nonetheless, we find that 100‐year trends in CMIP6 piControl simulations never exceed the maximum observed warming trend. Furthermore, interdecadal GMST variability in the unforced piControl simulations is associated with regional variability in the high latitudes and the east Pacific, whereas interdecadal GMST variability in instrumental data and in historical simulations with external forcing is more globally coherent and is associated with variability in tropical deep convective regions.

 
more » « less
Award ID(s):
1929775
NSF-PAR ID:
10455329
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
47
Issue:
7
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Marine heatwaves (MHWs)—extremely warm, persistent sea surface temperature (SST) anomalies causing substantial ecological and economic consequences—have increased worldwide in recent decades. Concurrent increases in global temperatures suggest that climate change impacted MHW occurrences, beyond random changes arising from natural internal variability. Moreover, the long-term SST warming trend was not constant but instead had more rapid warming in recent decades. Here we show that this nonlinear trend can—on its own—appear to increase SST variance and hence MHW frequency. Using a Linear Inverse Model to separate climate change contributions to SST means and internal variability, both in observations and CMIP6 historical simulations, we find that most MHW increases resulted from regional mean climate trends that alone increased the probability of SSTs exceeding a MHW threshold. Our results suggest the need to carefully attribute global warming-induced changes in climate extremes, which may not always reflect underlying changes in variability. 
    more » « less
  2. Abstract A major uncertainty in reconstructing historical sea surface temperature (SST) before the 1990s involves correcting for systematic offsets associated with bucket and engine-room intake temperature measurements. A recent study used a linear scaling of coastal station-based air temperatures (SATs) to infer nearby SSTs, but the physics in the coupling between SATs and SSTs generally gives rise to more complex regional air–sea temperature differences. In this study, an energy-balance model (EBM) of air–sea thermal coupling is adapted for predicting near-coast SSTs from coastal SATs. The model is shown to be more skillful than linear-scaling approaches through cross-validation analyses using instrumental records after the 1960s and CMIP6 simulations between 1880 and 2020. Improved skill primarily comes from capturing features reflecting air–sea heat fluxes dominating temperature variability at high latitudes, including damping high-frequency wintertime SAT variability and reproducing the phase lag between SSTs and SATs. Inferred near-coast SSTs allow for intercalibrating coastal SAT and SST measurements at a variety of spatial scales. The 1900–40 mean offset between the latest SST estimates available from the Met Office (HadSST4) and SAT-inferred SSTs range between −1.6°C (95% confidence interval: [−1.7°, −1.4°C]) and 1.2°C ([0.8°, 1.6°C]) across 10° × 10° grids. When further averaged along the global coastline, HadSST4 is significantly colder than SAT-inferred SSTs by 0.20°C ([0.07°, 0.35°C]) over 1900–40. These results indicate that historical SATs and SSTs involve substantial inconsistencies at both regional and global scales. Major outstanding questions involve the distribution of errors between our intercalibration model and instrumental records of SAT and SST as well as the degree to which coastal intercalibrations are informative of global trends. Significance Statement To evaluate the consistency of instrumental surface temperature estimates before the 1990s, we develop a coupled energy-balance model to intercalibrate measurements of sea surface temperature (SST) and station-based air temperature (SAT) near global coasts. Our model captures geographically varying physical regimes of air–sea coupling and outperforms existing methods in inferring regional SSTs from SAT measurements. When applied to historical temperature records, the model indicates significant discrepancies between inferred and observed SSTs at both global and regional scales before the 1960s. Our findings suggest remaining data issues in historical temperature archives and opportunities for further improvements. 
    more » « less
  3. Abstract

    Land surface air temperatures (LSAT) inferred from weather station data differ among major research groups. The estimate by NOAA’s monthly Global Historical Climatology Network (GHCNm) averages 0.02°C cooler between 1880 and 1940 than Berkeley Earth’s and 0.14°C cooler than the Climate Research Unit estimates. Such systematic offsets can arise from differences in how poorly documented changes in measurement characteristics are detected and adjusted. Building upon an existing pairwise homogenization algorithm used in generating the fourth version of NOAA’s GHCNm(V4), PHA0, we propose two revisions to account for autocorrelation in climate variables. One version, PHA1, makes minimal modification to PHA0by extending the threshold used in breakpoint detection to be a function of LSAT autocorrelation. The other version, PHA2, uses penalized likelihood to detect breakpoints through optimizing a model-selection problem globally. To facilitate efficient optimization for series with more than 1000 time steps, a multiparent genetic algorithm is proposed for PHA2. Tests on synthetic data generated by adding breakpoints to CMIP6 simulations and realizations from a Gaussian process indicate that PHA1and PHA2both similarly outperform PHA0in recovering accurate climatic trends. Applied to unhomogenized GHCNmV4, both revised algorithms detect breakpoints that correspond with available station metadata. Uncertainties are estimated by perturbing algorithmic parameters, and an ensemble is constructed by pooling 50 PHA1- and 50 PHA2-based members. The continental-mean warming in this new ensemble is consistent with that of Berkeley Earth, despite using different homogenization approaches. Relative to unhomogenized data, our homogenization increases the 1880–2022 trend by 0.16 [0.12, 0.19]°C century−1(95% confidence interval), leading to continental-mean warming of 1.65 [1.62, 1.69]°C over 2010–22 relative to 1880–1900.

    Significance Statement

    Accurately correcting for systematic errors in observational records of land surface air temperature (LSAT) is critical for quantifying historical warming. Existing LSAT estimates are subject to systematic offsets associated with processes including changes in instrumentation and station movement. This study improves a pairwise homogenization algorithm by accounting for the fact that climate signals are correlated over time. The revised algorithms outperform the original in identifying discontinuities and recovering accurate warming trends. Applied to monthly station temperatures, the revised algorithms adjust trends in continental mean LSAT since the 1880s to be 0.16°C century−1greater relative to raw data. Our estimate is most consistent with that from Berkeley Earth and indicates lesser and greater warming than estimates from NOAA and the Met Office, respectively.

     
    more » « less
  4. Abstract

    For several decades the existence of interdecadal and multidecadal internal climate oscillations has been asserted by numerous studies based on analyses of historical observations, paleoclimatic data and climate model simulations. Here we use a combination of observational data and state-of-the-art forced and control climate model simulations to demonstrate the absence of consistent evidence for decadal or longer-term internal oscillatory signals that are distinguishable from climatic noise. Only variability in the interannual range associated with the El Niño/Southern Oscillation is found to be distinguishable from the noise background. A distinct (40–50 year timescale) spectral peak that appears in global surface temperature observations appears to reflect the response of the climate system to both anthropogenic and natural forcing rather than any intrinsic internal oscillation. These findings have implications both for the validity of previous studies attributing certain long-term climate trends to internal low-frequency climate cycles and for the prospect of decadal climate predictability.

     
    more » « less
  5. Abstract

    How summertime temperature variability will change with warming has important implications for climate adaptation and mitigation. CMIP5 simulations indicate a compound risk of extreme hot temperatures in western Europe from both warming and increasing temperature variance. CMIP6 simulations, however, indicate only a moderate increase in temperature variance that does not covary with warming. To explore this intergenerational discrepancy in CMIP results, we decompose changes in monthly temperature variance into those arising from changes in sensitivity to forcing and changes in forcing variance. Across models, sensitivity increases with local warming in both CMIP5 and CMIP6 at an average rate of 5.7 ([3.7, 7.9]; 95% c.i.) × 10−3°C per W m−2per °C warming. We use a simple model of moist surface energetics to explain increased sensitivity as a consequence of greater atmospheric demand (∼70%) and drier soil (∼40%) that is partially offset by the Planck feedback (∼−10%). Conversely, forcing variance is stable in CMIP5 but decreases with warming in CMIP6 at an average rate of −21 ([−28, −15]; 95% c.i.) W2 m−4per °C warming. We examine scaling relationships with mean cloud fraction and find that mean forcing variance decreases with decreasing cloud fraction at twice the rate in CMIP6 than CMIP5. The stability of CMIP6 temperature variance is, thus, a consequence of offsetting changes in sensitivity and forcing variance. Further work to determine which models and generations of CMIP simulations better represent changes in cloud radiative forcing is important for assessing risks associated with increased temperature variance.

     
    more » « less