skip to main content


Title: A Statistical Analysis of Powder Flowability in Metal Additive Manufacturing
  more » « less
NSF-PAR ID:
10161774
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Engineering Materials
Volume:
22
Issue:
10
ISSN:
1438-1656
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Purpose: To investigate the effect of dry coating the amount and type of silica on powder flowability enhancement using a comprehensive set of 19 pharmaceutical powders having different sizes, surface roughness, morphology, and aspect ratios, as well as assess flow predictability via Bond number estimated using a mechanistic multi-asperity particle contact model. Method: Particle size, shape, density, surface energy and area, SEM-based morphology, and FFC were assessed for all powders. Hydrophobic (R972P) or hydrophilic (A200) nano-silica were dry coated for each powder at 25%, 50%, and 100% surface area coverage (SAC). Flow predictability was assessed via particle size and Bond number. Results: Nearly maximal flow enhancement, one or more flow category, was observed for all powders at 50% SAC of either type of silica, equivalent to 1 wt% or less for both the hydrophobic R972P or hydrophilic A200, while R972P generally performed slightly better. Silica amount as SAC better helped understand the relative performance. The power-law relation between FFC and Bond number was observed. Conclusion: Significant flow enhancements were achieved at 50% SAC, validating previous models. Most uncoated very cohesive powders improved by two flow categories, attaining easy flow. Flowability could not be predicted for both the uncoated and dry coated powders via particle size alone. Prediction was significantly better using Bond number computed via the mechanistic multi-asperity particle contact model accounting for the particle size, surface energy, roughness, and the amount and type of silica. The widely accepted 200 nm surface roughness was not valid for most pharmaceutical powders. 
    more » « less
  2. Abstract Feedstock powders used in binder jetting additive manufacturing include nanopowder, micropowder, and granulated powder. Two important characteristics of the feedstock powders are flowability and sinterability. This paper aims to compare the flowability and sinterability of different feedstock powders. Three powders were compared: nanopowder (with a particle size of ∼100 nm), micropowder (with a particle size of 70 μm), and granulated powder (with a granule size of ∼70 μm) made from the nanopowder by spray freeze drying. Flowability metrics employed included apparent density (AD), tap density (TD), volumetric flow rate (VFR), mass flow rate (MFR), Hausner ratio (HR), Carr index (CI), and repose angle (RA). Sinterability metrics employed included sintered bulk density (SBD), volumetric shrinkage (VS), and densification ratio (DR). Results show that the granulated powder has a higher flowability than the nanopowder and a higher sinterability than the micropowder. Moreover, different flowability metric values of the granulated powder are close to those of the micropowder, indicating that these two powers have a comparably high flowability. Similarly, different sinterability metric values of the granulated powder are close to those of the nanopowder, indicating that these two powders have a comparably high sinterability. 
    more » « less
  3. Objective of this study is to prepare the binder jetting feedstock powder by spray freeze drying and study the effects of its parameters on the powder properties. Binder jetting additive manufacturing is a promising technology for fabricating ceramic parts with complex or customized geometries. However, this process is limited by the relatively low density of the fabricated parts even after sintering. The main cause comes from the contradicting requirements of the particle size of the feedstock powder: a large particle size (>5 μm) is required for a high flowability while a small particle size (<1 μm) for a high sinterability. For the first time, a novel technology for the feedstock material preparation, called spray freeze drying, is investigated to address this contradiction. Using raw alumina nanopowder (100 nm), a full factorial design at two levels for two factors (spraying pressure and slurry feed rate) was formed to study their effects on the properties (i.e., granule size, flowability, and sinterability) of the obtained granulated powder. Results show that high pressure and small feed rate lead to small granule size. Compared with the raw powder, the flowability of the granulated powders was significantly increased, and the high sinterability was also maintained. This study proves that spray freeze granulation is a promising technology for the feedstock powder preparation of binder jetting additive manufacturing. 
    more » « less
  4. The objective of this study is to compare three different feedstock powders for the binder jetting process by characterizing their flowability and sinterability. Binder jetting additive manufacturing is a promising technology for fabricating ceramic parts with complex or customized geometries. Granulation is a promising material preparation method due to the potential high sinterability and flowability of the produced powder. However, no study has been made to systematically compare raw and granulated powders in terms of their flowing and sintering behaviors. This paper aims at filling this knowledge gap. Two raw powders (i.e., fine raw powder of 300 nm and coarse raw powder of 70 μm) and one granulated powder from spray freeze drying were compared. Different flowability metrics, including volumetric flow rate, mass flow rate, Hausner ratio, Carr index, and repose angle were measured. Different sinterability metrics, including sintered bulk density, volume shrinkage, and densification ratio were compared for all three powders. Results show that granulated powder achieved comparably high flowability to that of the coarse raw powder and also comparably high sinterability to that of the fine raw powder. Moreover, suitable metrics for the characterization of the sinterability and flowability for these three powders are recommended. This study suggests spray freeze drying produces high-quality feedstock powder for binder jetting process. 
    more » « less
  5. Abstract

    Micro- and nanoporous materials have gathered attention from the scientific community due to their size dependent properties, including but not limited to high specific surface area, surface diffusivity, bulk diffusivity and permeability, catalytic activity, and distinct optical properties. In this work, spherical nanoporous copper (np-Cu) powders, due to their nanosized porosity and low Cu2O content, show hemispherical total reflectance of 20% which is significantly lower than its bulk counterpart value for solid or molten copper of approximately 97% at wavelengths of most commercial Laser Powder Bed Fusion (L-PBF) commercial machines. The low-reflectance of np-Cu powders has the potential to be used in L-PBF to improve laser absorption, volumetric energy efficiency, and throughput of this additive manufacturing process. In fact, a prepared mixture of solid Cu powders containing only 5 wt.% of np-Cu powders reflects 34.8 % less than pure copper powders as shown in this paper. Np-Cu powders are fabricated via chemical dealloying of gas atomized CuAl alloy in a robust and scalable approach, and then mixed with pure copper powders to prepare hybrid feedstocks. Under this framework, the crucial role of deglomeration strategies to achieve homogeneity and flowability of np-Cu/Cu hybrid mixtures are evaluated via particle imaging to determine agglomerate size and composition with an eye at obtaining a high-quality print in L-PBF. In np-Cu powders fabrication, washing them in low-surface tension fluids upholds the highest degree of deglomeration in their fabrication process, and for hybrid feedstocks preparation, pre-mixing Cu and CuAl prior to dealloying yields the best homogeneity results with smallest size of agglomerates and good flowability.

     
    more » « less