skip to main content

Title: Acoustic wave focusing by doubly curved origami-inspired arrays
Spherically focused transducers have been long relied on to target acoustic energy delivery. Yet, these structures have limitations with respect to size and mobility for medical treatment applications. Recent developments in the field of reconfigurable structures reveal that the ancient art of origami inspires new platforms by which to enable spherical shapes that are additionally foldable for ease of transport. This research explores the opportunities for a unique, flat foldable doubly curved tessellated array to enable wave focusing capability similar to an ideal medical transducer shape: the spherical cap transducer. An analytical model of the doubly curved array is created and validated against data collected from a proof-of-concept array. The model is then leveraged to understand how the array design and complexity relatively govern the wave focusing capability. The findings show that doubly curved acoustic arrays do not require excessive facet refinement to achieve wave focusing similar to nominal spherically focused transducers. Yet, the optimal frequencies for which such capability is borne out vary substantially on the basis of array design. The discoveries of this research motivate future consideration of flat foldable doubly curved acoustic arrays for potential implementation into medical transducer development for hard-to-access surgical treatments.  more » « less
Award ID(s):
Author(s) / Creator(s):
Date Published:
Journal Name:
Journal of Intelligent Material Systems and Structures
Page Range / eLocation ID:
1041 to 1052
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Recent studies have exemplified the potential for curved origami-inspired acoustic arrays to focus waves. Yet, reconfigurable structures that adopt curvatures are often difficult to translate to practice due to mechanical deformation of the facets that inhibit straightforward folding. In addition, not all tessellations that curve upon folding are also flat-foldable, which is a key advantage of portability inherent to many origami-inspired structures. This research introduces a new concept of partially activated reconfigurable acoustic arrays as a means to mitigate these drawbacks. Here, tessellations are studied where a subset of the facet surfaces are considered to radiate acoustic waves. The analytical results reveal focusing behaviors in such arrays that are otherwise not manifest for the array when fully activated. The focused waves are more intense in amplitude and space for partially activated arrays than fully activated counterparts. These trends are verified by experiment and are also found to be applicable to multiple reconfigurable array geometries. The results encourage broader study of the design space accessible in reconfigurable arrays to capitalize on all of the functionality afforded by origami-inspired wave guiding structures. 
    more » « less
  2. null (Ed.)
    Abstract Curved surfaces are often used to radiate and focus acoustic waves. Yet, when tessellated into reconfigurable surfaces for sake of deployability needs, origami-inspired acoustic arrays may be challenging to hold into curved shape and may not retain flat foldability. On the other hand, deployable mechanisms such as the Hoberman ring are as low-dimensional as many origami tessellations and may maintain curved shape with ease due to ideal rigid bar compositions. This research explores an interface between a Hoberman ring and Miura-ori tessellation that maintain kinematic and geometric compatibility for sake of maintaining curved shapes for sound focusing. The Miura-ori facets are considered to vibrate like baffled pistons and generate acoustic waves that radiate from the ring structure. An analytical model is built to reveal the near field acoustic behavior of acoustic arrays resulting from a Hoberman–Miura system synthesis. Acoustic wave focusing capability is scrutinized and validated through proof-of-principle experiments. Studies reveal wave focusing phenomena distinct to this manifestation of the acoustic array and uncover design and operational influences on wave focusing effectiveness. The results encourage exploration of new interfaces between reconfigurable mechanisms and origami devices where low-dimensional shape change is desired. 
    more » « less
  3. Abstract Recent studies have shown that reconfigurable acoustic arrays inspired from rigid origami structures can be used to radiate and focus acoustic waves. Yet, there is a need for exploration of single-degree-of-freedom deployment to be integrated with such arrays for sake of tailoring wave focusing. This research explores a reconfigurable acoustic array inspired from a regular Miura-ori unit cell and threefold-symmetric Bricard linkage. The system focuses on acoustic waves and has single-degree-of-freedom motion when incorporated with a modified threefold-symmetric Bricard linkage. Three configurations of the array are analyzed where array facets that converge towards the center axis are considered to vibrate like baffled pistons and generate acoustic waves into the surrounding fluid. An analytical model is constructed to explore the near-field acoustic focusing behavior of the proposed acoustic array. The wave focusing capabilities of the array are verified through proof-of-principle experiments. The results show that the wave focusing of the array is influenced by the geometric parameters of the facets and the relative distance of facets to the center axis, in agreement with simplified ray acoustics estimates. These findings underscore the fundamental relationship between focusing sound radiators and geometric acoustics principles. The results encourage broader exploration of acoustic array designs inspired from integrated single-degree-of-freedom linkages and origami structures for sake of straightforward array deployment and reconfiguration. 
    more » « less
  4. Contact-free manipulation of small objects ( e.g. , cells, tissues, and droplets) using acoustic waves eliminates physical contact with structures and undesired surface adsorption. Pioneering acoustic-based, contact-free manipulation techniques ( e.g. , acoustic levitation) enable programmable manipulation but are limited by evaporation, bulky transducers, and inefficient acoustic coupling in air. Herein, we report an acoustofluidic mechanism for the contactless manipulation of small objects on water. A hollow-square-shaped interdigital transducer (IDT) is fabricated on lithium niobate (LiNbO 3 ), immersed in water and used as a sound source to generate acoustic waves and as a micropump to pump fluid in the ± x and ± y orthogonal directions. As a result, objects which float adjacent to the excited IDT can be pushed unidirectionally (horizontally) in ± x and ± y following the directed acoustic wave propagation. A fluidic processor was developed by patterning IDT units in a 6-by-6 array. We demonstrate contactless, programmable manipulation on water of oil droplets and zebrafish larvae. This acoustofluidic-based manipulation opens avenues for the contactless, programmable processing of materials and small biosamples. 
    more » « less
  5. Medical ultrasound and other devices that require transducer arrays are difficult to manufacture, particularly for high frequency devices (>30 MHz). To enable focusing and beam steering, it is necessary to reduce the center-to-center element spacing to half of the acoustic wavelength. Conventional methodologies prevent co-sintering ceramic–polymer composites due to the low decomposition temperatures of the polymer. Moreover, for ultrasound transducer arrays exceeding 30 MHz, methods such as dice-and-fill cannot provide the dimensional tolerances required. Other techniques in which the ceramic is formed in the green state often fail to retain the required dimensions without distortion on firing the ceramic. This paper explores the use of the cold sintering process to produce dense lead zirconate titanate (PZT) ceramics for application in high frequency transducer arrays. PZT–polymer 2-2 composites were fabricated by cold sintering tape cast PZT with Pb nitrate as a sintering aid and ZnO as the sacrificial layer. PZT beams of 35 μm width with ~5.4 μm kerfs were produced by this technique. The ZnO sacrificial layer was also found to serve as a liquid phase sintering aid that led to grain growth in adjacent PZT. This composite produced resonance frequencies of >17 MHz. 
    more » « less