skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: CRISPR/Cas9-mediated targeted T-DNA integration in rice
Agrobacterium-mediated T-DNA integration into the plant genomes is random, which often causes variable transgene expression and insertional mutagenesis. Because T-DNA preferentially integrates into double-strand DNA breaks, we adapted a CRISPR/Cas9 system to demonstrate that targeted T-DNA integration can be achieved in the rice genome. Using a standard Agrobacterium binary vector, we constructed a T-DNA that contains a CRISPR/Cas9 system using SpCas9 and a gRNA targeting the exon of the rice AP2 domain-containing protein gene Os01g04020. The T-DNA also carried a red fluorescent protein and a hygromycin resistance (hptII) gene. One version of the vector had hptII expression driven by an OsAct2 promoter. In an effort to detect targeted T-DNA insertion events, we built another T-DNA with a promoterless hptII gene adjacent to the T-DNA right border such that integration of T-DNA into the targeted exon sequence in-frame with the hptII gene would allow hptII expression. Our results showed that these constructs could produce targeted T-DNA insertions with frequencies ranging between 4 and 5.3% of transgenic callus events, in addition to generating a high frequency (50−80%) of targeted indel mutations. Sequencing analyses showed that four out of five sequenced T-DNA/gDNA junctions carry a single copy of full-length T-DNA at the target site. Our results indicate that Agrobacterium-mediated transformation combined with a CRISPR/Cas9 system can efficiently generate targeted T-DNA insertions.  more » « less
Award ID(s):
1725122
PAR ID:
10161843
Author(s) / Creator(s):
Date Published:
Journal Name:
Plant molecular biology
Volume:
99
ISSN:
1573-5028
Page Range / eLocation ID:
317-328
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Efficient genetic transformation is a prerequisite for rapid gene functional analyses and crop trait improvements. We recently demonstrated that new T-DNA binary vectors with NptII/G418 selection and a compatible helper plasmid can efficiently transform maize inbred B104 using our rapid Agrobacterium-mediated transformation method. In this work, we implemented the non-integrating Wuschel2 (Wus2) T-DNA vector method for Agrobacterium-mediated B104 transformation and tested its potential for recalcitrant inbred B73 transformation and gene editing. The non-integrating Wus2 (NIW) T-DNA vector-assisted transformation method uses two Agrobacterium strains: one carrying a gene-of-interest (GOI) construct and the other providing an NIW construct. To monitor Wus2 co-integration into the maize genome, we combined the maize Wus2 expression cassette driven by a strong constitutive promoter with a new visible marker RUBY, which produces the purple pigment betalain. As a GOI construct, we used a previously tested CRISPR-Cas9 construct pKL2359 for Glossy2 gene mutagenesis. When both GOI and NIW constructs were delivered by LBA4404Thy- strain, B104 transformation frequency was significantly enhanced by about two-fold (10% vs. 18.8%). Importantly, we were able to transform a recalcitrant inbred B73 using the NIW-assisted transformation method and obtained three transgene-free edited plants by omitting the selection agent G418. These results suggest that NIW-assisted transformation can improve maize B104 transformation frequency and provide a novel option for CRISPR technology for transgene-free genome editing. 
    more » « less
  2. Abstract High‐precision genome editing tools, such as programmable nucleases, are poised to transform crop breeding and significantly impact fundamental plant research. Among these tools, the CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)/Cas9 (CRISPR‐associated 9) system is a programmable, RNA‐guided nuclease that introduces targeted, site‐specific double‐stranded breaks in the target DNA loci. When these breaks are repaired, it often results in a frame‐shift mutation via short insertion/deletion (indel), leading to gene knockout. Since its first successful use in plants, CRISPR/Cas9 has been widely adopted for targeting genes of agronomic and scientific importance in multiple crops, including rice, maize, wheat, and sorghum. These cereal crops ensure global food security, provide essential nutrition, and support economic stability. Additionally, such crops support biofuel production, livestock feed, and sustainable farming practices through crop rotation. This article outlines the strategies for implementing CRISPR/Cas9 genome editing in plants, including a step‐by‐step process of guide RNA target selection, oligonucleotide design, construct development, assembly, and analysis of genome edits. © 2025 The Author(s). Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: CRISPR/Cas9 guide RNA target selection Support Protocol 1: Genomic DNA extraction in‐house protocol Basic Protocol 2: Construction of a binary plasmid vector Support Protocol 2:Agrobacteriumtransformation with a binary vector construct and stability check Support Protocol 3: Plant transformation Basic Protocol 3: Genotyping of edited events 
    more » « less
  3. Alfalfa (Medicago sativaL.) forage quality is adversely affected by lignin deposition in cell walls at advanced maturity stages. Reducing lignin content through RNA interference or antisense approaches has been shown to improve alfalfa forage quality and digestibility. We employed a multiplex CRISPR/Cas9-mediated gene-editing system to reduce lignin content and alter lignin composition in alfalfa by targeting theCOUMARATE 3-HYDROXYLASE (MsC3H)gene, which encodes a key enzyme in lignin biosynthesis. Four guide RNAs (gRNAs) targeting the first exon ofMsC3Hwere designed and clustered into a tRNA-gRNA polycistronic system and introduced into tetraploid alfalfa viaAgrobacterium-mediated transformation. Out of 130 transgenic lines, at least 73 lines were confirmed to contain gene-editing events in one or more alleles ofMsC3H. Fifty-five lines were selected for lignin content/composition analysis. Amongst these lines, three independent tetra-allelic homozygous lines (Msc3h-013, Msc3h-121, andMsc3h-158) with different mutation events inMsC3Hwere characterized in detail. Homozygous mutation ofMsC3Hin these three lines significantly reduced the lignin content and altered lignin composition in stems. Moreover, these lines had significantly lower levels of acid detergent fiber and neutral detergent fiber as well as higher levels of total digestible nutrients, relative feed values, andin vitrotrue dry matter digestibility. Taken together, these results showed that CRISPR/Cas9-mediated editing ofMsC3Hsuccessfully reduced shoot lignin content, improved digestibility, and nutritional values without sacrificing plant growth and biomass yield. These lines could be used in alfalfa breeding programs to generate elite transgene-free alfalfa cultivars with reduced lignin and improved forage quality. 
    more » « less
  4. Goetz, H (Ed.)
    Agrobacterium-mediated transformation is an essential tool for functional genomics studies and crop improvements. Recently developed ternary vector systems, which consist of a T-DNA vector and a compatible virulence (vir) gene helper plasmid (ternary helper), demonstrated that including an additionalvirgene helper plasmid into disarmedAgrobacteriumstrains significantly improves T-DNA delivery efficiency, enhancing plant transformation. Here, we report the development of a new ternary helper and thymidine auxotrophicAgrobacteriumstrains to boostAgrobacterium-mediated plant transformation efficiency. AuxotrophicAgrobacteriumstrains are useful in reducingAgrobacteriumovergrowth after the co-cultivation period because they can be easily removed from the explants due to their dependence on essential nutrient supplementation. We generated thymidine auxotrophic strains from publicAgrobacteriumstrains EHA101, EHA105, EHA105D, and LBA4404. These strains exhibited thymidine-dependent growth in the bacterial medium, and transientGUSexpression assay using Arabidopsis seedlings showed that they retain similar T-DNA transfer capability as their original strains. Auxotrophic strains EHA105Thy- and LBA4404T1 were tested for maize B104 immature embryo transformation using our rapid transformation method, and both strains demonstrated comparable transformation frequencies to the control strain LBA4404Thy-. In addition, our new ternary helper pKL2299A, which carries thevirAgene from pTiBo542 in addition to othervirgene operons (virG,virB,virC,virD,virE, andvirJ), demonstrated consistently improved maize B104 immature embryo transformation frequencies compared to the original version of pKL2299 (33.3% vs 25.6%, respectively). Therefore, our improvedAgrobacteriumsystem, including auxotrophic disarmedAgrobacteriumstrains and a new ternary helper plasmid, can be useful for enhancing plant transformation and genome editing applications. 
    more » « less
  5. Abstract Efficient and precise targeted insertion holds great promise but remains challenging in plant genome editing. An efficient nonhomologous end-joining-mediated targeted insertion method was recently developed by combining clustered regularly interspaced short palindromic repeat (CRISPR)/Streptococcus pyogenes CRISPR-associated nuclease 9 (SpCas9) gene editing with phosphorothioate modified double-stranded oligodeoxynucleotides (dsODNs). Yet, this approach often leads to imprecise insertions with no control over the insertion direction. Here, we compared the influence of chemical protection of dsODNs on efficiency of targeted insertion. We observed that CRISPR/SpCas9 frequently induced staggered cleavages with 1-nucleotide 5′ overhangs; we also evaluated the effect of donor end structures on the direction and precision of targeted insertions. We demonstrate that chemically protected dsODNs with 1-nucleotide 5′ overhangs significantly improved the precision and direction control of target insertions in all tested CRISPR targeted sites. We applied this method to endogenous gene tagging in green foxtail (Setaria viridis) and engineering of cis-regulatory elements for disease resistance in rice (Oryza sativa). We directionally inserted 2 distinct transcription activator-like effector binding elements into the promoter region of a recessive rice bacterial blight resistance gene with up to 24.4% efficiency. The resulting rice lines harboring heritable insertions exhibited strong resistance to infection by the pathogen Xanthomonas oryzae pv. oryzae in an inducible and strain-specific manner. 
    more » « less