skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Direct Cytosolic Delivery of Proteins through Coengineering of Proteins and Polymeric Delivery Vehicles
Award ID(s):
1808199
PAR ID:
10161878
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Journal of the American Chemical Society
Volume:
142
Issue:
9
ISSN:
0002-7863
Page Range / eLocation ID:
4349 to 4355
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
  2. The molecular machinery orchestrating microautophagy, whereby eukaryotic cells sequester autophagic cargo by direct invagination of the vacuolar/lysosomal membrane, is still largely unknown, especially in plants. Here, we demonstrate microautophagy of storage proteins in the maize aleurone cells of the endosperm and analyzed proteins with potential regulatory roles in this process. Within the cereal endosperm, starchy endosperm cells accumulate storage proteins (mostly prolamins) and starch whereas the peripheral aleurone cells store oils, storage proteins, and specialized metabolites. Although both cell types synthesize prolamins, they employ different pathways for their subcellular trafficking. Starchy endosperm cells accumulate prolamins in protein bodies within the endoplasmic reticulum (ER), whereas aleurone cells deliver prolamins to vacuoles via an autophagic mechanism, which we show is by direct association of ER prolamin bodies with the tonoplast followed by engulfment via microautophagy. To identify candidate proteins regulating this process, we performed RNA-seq transcriptomic comparisons of aleurone and starchy endosperm tissues during seed development and proteomic analysis on tonoplast-enriched fractions of aleurone cells. From these datasets, we identified 10 candidate proteins with potential roles in membrane modification and/or microautophagy, including phospholipase-Dα5 and a possible EUL-like lectin. We found that both proteins increased the frequency of tonoplast invaginations when overexpressed in Arabidopsis leaf protoplasts and are highly enriched at the tonoplast surface surrounding ER protein bodies in maize aleurone cells, thus supporting their potential connections to microautophagy. Collectively, this candidate list now provides useful tools to study microautophagy in plants. 
    more » « less
  3. Abstract Transdermal delivery is an attractive delivery method that increases bioavailability, is suitable for a wide variety of therapeutics, and offers stable delivery outcomes. However, many therapeutics are unable to readily cross the stratum corneum. Microneedles mechanically disrupt the cutaneous barrier to deliver small molecules, proteins, and vaccines. To date, microneedles have not been used in conjunction with coacervate, a liquid–liquid phase separation that protects unstable proteins. A three‐layer microneedle for the controlled release of three different molecules is designed. Through micromolding, microneedles are efficiently generated, which benefits product scalability. The microneedles have good mechanical integrity and effectively penetrate porcine skin ex vivo. The three layers, in the microneedles, release the cargo in a three‐phase manner. The released protein maintains its structure well. Moreover, layer thickness can be controlled by varying fabrication parameters. The microneedles can incorporate both small molecule drugs and protein therapeutics, thus promising uses in multi‐drug therapies through a single treatment. 
    more » « less